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Abstract 
Many functions can map images to the sphere for use as environ-
ment maps or spherical panoramas.  We develop a new metric that 
asymptotically measures how well these maps use a given number 
of samples to provide the greatest worst-case frequency content of 
the image everywhere over the sphere.  Since this metric assumes 
perfect reconstruction filtering even with highly anisotropic maps,  
we define another, conservative measure of sampling efficiency 
that penalizes anisotropy using the larger singular value of the 
mapping’s Jacobian. With these metrics, we compare spherical 
maps used previously in computer graphics as well as other map-
pings from cartography, and propose several new, simple 
mapping functions (dual equidistant and polar-capped maps) that 
are significantly more efficient and exhibit less anisotropy.  This 
is true with respect to either efficiency metric, which we show 
agree in the worst case for all but one of the spherical maps pre-
sented.  Although we apply the metrics to spherical mappings, 
they are useful for analyzing texture maps onto any 3D surface.   

Additional Keywords: cartography, environment map, Fourier transform, 
signal processing, singular value,  surface parameterization, texture. 

1. Introduction 
Spherical images representing the radiance field at a point are 
useful to simulate reflections on shiny surfaces (environment 
maps) [2][7][9][20] and to produce arbitrary views from a point 
(spherical panoramas) [15][5].   To enhance realism, we expect 
more widespread use of such spherical images, including the use 
of multiple spherical and hemispherical images to approximate 
radiance at many points throughout an environment [11]. 
Rectangular arrays of samples (i.e., texture maps) are ubiquitous 
in graphics systems, providing advantages including locality of 
reference, simplicity of texel addressing, and ease of filtering for 
reconstruction.  We omit schemes like spherical wavelets [17] 
which exploit local differences in frequency content, but are more 
complicated to implement in hardware.  Still, many functions 
have been used to map samples from a 2D texture domain to the 
sphere, including the cube map [7][15][20], OpenGL map [8][13], 
polar coordinate (latitude/longitude) map [2], and dual stereo-
graphic map [9] (called “dual parabolic” in [9]).  How should 
these mappings be compared?  Is there anything better? 
To answer these questions, we propose the following criteria: 
1. Sampling efficiency: the mapping function should support the 
greatest worst-case frequency content in the spherical image using 
the fewest samples.  We prefer a worst-case metric assuming 
blurry spots or directions in the mapping are undesirable, even if 
they allow greater fidelity elsewhere.  Minimizing texture samples 
is important to conserve graphics memory and reduce memory 
bandwidth.   
2. Anisotropy: isotropic filtering methods (e.g., trilinear interpo-
lation within a MIPMAP) [21] penalize maps having significant 
anisotropy, since they cause excessive blur in the locally stretched 

direction.  Even hardware having anisotropic filtering capability 
can not tolerate unbounded anisotropy, though anisotropy values 
up to 2.0 are handled with hardware implementations such as 
Nvidia’s TNT and GeForce [10]. 
3. Simplicity of projection function: texture coordinate genera-
tion by the graphics system should be quickly computable.  
4. Ease of geodesic interpolation: simple (e.g., linear) interpo-
lation over the domain should closely approximate geodesic 
interpolation over the sphere. 
5. Ease of creation: ideally, mappings should be suitable for 
dynamic creation using the rendering hardware.  Note though that 
maps can be reparameterized using an additional rendering pass 
over a textured, tessellated sphere. 
Also important is the use of map components, such as the six 
faces of the cube map or two hemispheres in the dual stereo-
graphic map.  With enough components, or “pieces” in a 
piecewise map, sampling efficiency can be increased to an asymp-
totic limit.  But more components create more complexity in 
evaluating the mapping function, reduced locality of reference, 
and greater difficulty in MIPMAP construction.  Moreover, effi-
ciency gains may be lost through area wasted in packing many 
small maps into the texture rectangle.  For these reasons, only 
maps having few components are practical. 
This paper formally defines sampling efficiency for texture map-
ping functions over regular 2D lattices by applying results from 
signal processing [14] and crystallography [3] to spatially-varying 
mappings.  We define two metrics; one considering only fre-
quency content and another, strictly larger, that takes into account 
anisotropy by considering the largest singular value of the Jaco-
bian over the domain.  Using these metrics, we analyze several 
types of spherical maps used previously in computer graphics as 
well as other mappings from cartography [16][19], and  show that 
the two metrics agree in the worst case.  We propose several new 
mappings, including the polar-capped map and dual equidistant 
map, having superior sampling efficiency and reduced anisotropy.  
We also provide theoretical limits on the efficiency attainable by 
any piecewise-differentiable map to the sphere.  The results are 

Map Name Sampling 
Req. 

Maximum 
Anisotropy 

Map  
Comps. 

OpenGL ∞ ∞ 1 
Cube 24 1.73 6 
Dual Stereographic 32 1 2 
Lat/Long 19.7 ∞ 1 
Dual Equidistant* 19.7 1.57 2 
Low Distortion Equal Area* 19.7 3.45 1 
Polar-Capped* (stretch invariant) 14.8 1.41 3 
Polar-Capped* (conformal) 16.5 1 3 
Polar-Capped* (hex. reparam.) 13.5 1.73 3 
Optimal Isometric** 12.57 1 ∞ 
Optimal** 10.9 1.73 ∞ 

Figure 1: Summary of Spherical Map Properties.  Single-starred are 
new maps described in this paper; double-starred are theoretical limits 
rather than actual maps.  Sampling requirement is proportional to texture 
area required for a desired frequency content in the worst case (Section 
2.2).  OpenGL’s infinite value means its number of samples grows faster 
than quadratically as frequency content increases.  Smaller anisotropy 
values are better and represent degree of local conformality (Section 2.3).  
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summarized in Figure 1.  The new maps have simple-to-evaluate 
projection functions that can be implemented using existing 
hardware to reduce storage and bandwidth costs and avoid anisot-
ropic blur of spherical images. 

2. Sampling Efficiency and Other Local 
Mapping Properties 
The spherical mapping function, ( , )u vS , maps (u,v) points in the  
domain, D, to 3D unit-length vectors. Existing graphics systems 
use rectangular domains and sampling patterns (see Figure 1(a)). 
Each (u,v) sample from the tabulated spherical image represents 
the radiance associated with vector ( , )u vS . 
Analysis of sampling efficiency is first developed for regular lat-
tices in the plane (Section 2.1).  We then extend this analysis to 
spatially varying mappings by locally projecting the sampling grid 
onto the tangent plane at each point and applying the same planar 
analysis (Section 2.2).   Section 2.3 presents mathematics for the 
analysis of local distortion (anisotropy). 

2.1 Sampling in the Plane 
Following [14][6], a regular sampling pattern in the plane can be 
represented as a sampling matrix, ( )1 2≡V v v , where 1v  and 2v  
are linearly independent vectors to two nearest-neighbor sample 
locations.  For example, isotropic rectangular and hexagonal sam-
pling have the following sampling matrices: 

1 0 3 3 3 3
,

0 1 1 1
rect hexδ δ

� ����
≡ ≡ � ����

−
��� � �V V  

where δ represents the sample spacing.  The corresponding sam-
ple geometries are shown in Figure 2.  Sample locations are 
derived using t = V n where ( )1 2,n n ′≡n is a vector of integers 
(prime denotes transpose). 
Denote the continuous signal to be sampled as ( )f t

�
.  The corre-

sponding sampled version is ( ) ( ) ( )≡ =f n f t f Vn
�	�

.  Taking the 
Fourier transform of f
 and then its inverse, we obtain 
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where ( )x yΩ Ω ′≡ΩΩΩΩ is in units of radians per unit length.  Doing 
the same for the discrete signal, f, we get 

2
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1
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where ( )x yω ω ′≡ωωωω is in units of radians.  So 
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1
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4
i d
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Substituting ′=Vω Ωω Ωω Ωω Ω  yields 

1
2

1 1
( ) ( ) exp( )

4 det
i d

π

+∞
−

−∞

′ ′= �f n F V n
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�

. 

The double integral in the ( )x yω ω –plane can be broken into an 
infinite sum of integrals each covering a square area of 24π : 
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Replacing xω by 2x xkω π− and yω by 2y ykω π− , simplifying, 
and comparing to (1) implies that 
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′ = −

�
�k

k

F F V k
V

F V F U k
V

ω ωω ωω ωω ω

Ω ΩΩ ΩΩ ΩΩ Ω

�
�  

where 12π −′≡U V , and the integer vector ( ),x yk k ′≡k .  Thus 
the discrete signal’ s Fourier transform has a periodicity matrix 
related to the original sampling matrix V via its inverse transpose.   
To eliminate aliasing, we need to bandlimit ( )f t

�
such that its 

Fourier transform, ( )F ΩΩΩΩ
�

, is zero outside a finite region in fre-
quency space.  The region is chosen so as to have no overlap 
between neighboring periodically repeated tiles of ( )′F V ΩΩΩΩ .  For 
the rectangular and hexagonal sampling matrix examples, we have 

2 0 3 3
,

0 2 1 1
rect hex

π π
δ δ

� ����
≡ ≡ �  �! 

−
"�# " #U U  

with frequency space tiles shown in Figure 3.  
For such a bandlimited function, inside the periodic tile contain-
ing the origin, called the baseband, B, the continuous and discrete 
Fourier transformed functions are related via 

1
( ) ( )

det
′ =F V F

V
Ω ΩΩ ΩΩ ΩΩ Ω

$
 

implying we can reconstruct such bandlimited functions exactly 
from the discrete samples. In fact, the reconstruction is given by 

2

det
( ) ( ) exp( ( ))

4
i d

π
′= −

% &
n B

V
f t f n t VnΩ ΩΩ ΩΩ ΩΩ Ω
'

. 

Given a sampling matrix V, we find the radius of the largest in-
scribed circle in B; that is, the maximum frequency content in all 
directions that a circularly bandlimited periodic signal sampled 
using V can support.  This is calculated by computing 

( )1
1 22π −′≡ =U V u u  and finding half the minimum distance of 

x

y

v1

v2

δ

δ

(a) rectangular

x

y

δ

(b) hexagonal

v2

v1

332δ

 
Figure 2: Example Plane Samplings 

(a) rectangular (b) hexagonal

u1

u2

xΩΩΩΩ

yΩΩΩΩ

u1

u2
xΩΩΩΩ

yΩΩΩΩ

π/δ

π/δ

 
Figure 3: Fourier transform of discrete signals from example sampling 
matrices.  Both rectangular and hexagonal sampling from Figure 2 pro-
vide for frequencies up to π δ  in all directions without aliasing—a 
frequency radius of π δ  is the largest for an inscribed circle in each 
periodic tile.  But hexagonal sampling requires 13.4% fewer samples to 
accomplish this, since the circles are packed more tightly in each hexago-
nal tile, while the square tiles waste space on outside diagonal frequencies.   
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the origin to the vectors 1 1 2 2n n±u u , for integers n1 and n2 not 
both zero.  We thus define the sampling spectral radius, ∆, of V : 

( )
( ) ( )

1 2

1 2

1 1 2 2

1 1 2 2

( , ) (0,0)

( , ) (0,0)

1 2 min

det min

n n

n n

n n

n n

∆

π
≠

≠

≡ −

= −

u u

V v v
 (2) 

For the rectangular and hexagonal example samplings, ∆ π δ= .  
It can be shown [14] that among all sampling matrices having a 
given sampling spectral radius, the most efficient is always iso-
tropic hexagonal sampling, in that it covers the greatest area with 
the fewest samples.  Sampling density can be measured by 

1 detd ≡ V , for which our example sampling matrices yield 
2

rectd δ=  and 22 3 3hexd δ= . 

2.2 Mapped Sampling 
We are interested in frequency content on the sphere, not the 
plane.  We therefore locally apply the previous section’ s analysis 
of regular sampling patterns in 2D by approximating the spherical 
samples in the neighborhood of ( , )u vS by 2D points projected to  
the tangent plane there.   
Let ( , ) ( , )u u v u u v≡ ∂ ∂S S  and ( , ) ( , )v u v v u v≡ ∂ ∂S S .  Then an 
orthonormal basis for the tangent space is given by ( )1 2T T  

1 2

( ) ( )
( , ) , ( , )u u u v u v u

u u

u v u v
τ

−≡ ≡S S S S S S ST T
S S

( (
 

where 2( , ) ( )( ) ( )u u v v u vu vτ ≡ −S S S S S S
) ) )

represents the differ-
ential area at (u,v).  Letting ( )( , ) u vu v ≡J S S ,  

( )( , ) ( , ) ( , ) ( , )u v u v u v u v ′+ − ≈S S J
*+* *,*

 (3) 

is an approximation good for small ( , )u v
-,-

.  Since the Jacobian J 
maps perturbations in any domain direction to the tangent plane, it 
represents a “ local”  sampling matrix.  To derive a 2D sampling 
matrix, we project it into the plane using the orthonormal basis 
( )1 2T T , a pure rotation which preserves the spectral properties.  
Defining K as the resulting transformed Jacobian: 

( )1 2

1
( , ) ( , ) ( , ) ( , )

0
u u u v

u

u v u v u v u v
τ

. /
′≡ = 0 12 3S S S S

K T T J
S

454
 

For rectangular sampling with spacing δ, the local sampling ma-
trix mapped by S is then given by δ=V K . 
We can now analyze the spectral radius determined by V at any 
point (u,v) as if S were everywhere equal to the local approxima-
tion in (3).  By selecting the minimum sampling spectral radius 
for any point in D, we determine the highest permissible fre-
quency, *∆ , in a circularly bandlimited function rectangularly 
sampled with spacing δ.  Substituting the local sampling matrix 
into the definition of sampling spectral radius (2) and simplifying 
yields the local sampling spectral radius ( , )u v∆ : 

( )
1 2

1 2( , ) (0,0)

( , )
( , ) where ( , )

( , ) min u vn n

u v
u v u v

u v n n
π τ∆ Γ

δ Γ
≠

≡ ≡
+S S

 

where n1 and n2 are integers.  We call Γ  the local sampling spec-
tral stretch of the mapping.  The minimum local sampling spectral 
radius over the parameter domain, *∆ , is then defined via 

* *
*( , ) ( , )

min ( , ) where max ( , )
u v u v

u v u v
π∆ ∆ Γ Γ

δ Γ∈ ∈
≡ = ≡

D D
 

As expected, for a given mapping function, we can make *∆ arbi-
trarily large by reducing δ, essentially, by adding more samples.   
Mapping efficiencies can be compared by fixing the sampling 
spectral radius and determining the number of samples required to 
generate that desired frequency content.  The number of samples 
required to sample the domain D is given by 

( )
22 *

2*
* *2

A
N A A

∆π Γ
Γ ∆δ π

687697
≡ = = :�;: ;<9= <8=  

where A is the area of D.  Defining the (spectral) sampling effi-
ciency of a mapping, ( )21 *1 AΨ Γ− ≡ , then the number of 
samples required to achieve a minimum spectral radius *∆  is 

( )2* 1N ∆ π Ψ −= .  Higher efficiency requires fewer samples for 
a given spectral radius everywhere in D.  We call the reciprocal of 
sampling efficiency the (spectral) sampling requirement, defined 

2*AΨ Γ≡  

2.3 Local Distortion Analysis 
A mapping function locally transforms an infinitesmal circle into 
a general ellipse, with eccentricity and rotation that can be deter-
mined from the Jacobian of the mapping.   The lengths of the 
major and minor axes of this ellipse, λ1 and λ2, are given by the 
singular values of the Jacobian 

( )
( )

2 2 2
1

2 2 2
2

( , ) 1 2 ( ) ( ) 4

( , ) 1 2 ( ) ( ) 4

u v a c a c b

u v a c a c b

λ

λ

≡ + + − +

≡ + − − +
  

where ( , ) u ua u v ≡ S S
>

, ( , ) u vb u v ≡ S S
?

, and ( , ) v vc u v ≡ S S
@

.  So 
λ1 represents the maximum local stretch or length of the longest 
vector mapped from the set of unit tangent vectors in the domain, 
and λ2 the maximum compression or length of the shortest 
mapped vector.  The singular values are related to the differential 
area via 1 2τ λ λ= .  We also define the anisotropy of the mapping, 

2 1α λ λ≡ , 1α ≥ , whose magnitude is useful for measuring the 
severity of artifacts from MIPMAP filtering.   
Mapping functions can be categorized by their local properties as 
follows: 

1 2

1 2

1 2

1

isometric ( , ) ( , )
conformal ( , ) ( , )

equivalent or area-preserving   ( , ) ( , )
stretch-preserving ( , )

u v u v
u v u v
u v u v
u v

λ λ η
λ λ
λ λ η
λ η

A = =A =A =A =

 

where η  is a constant and the properties are for all ( , )u v ∈ D .   
The sampling spectral stretch of a mapping Γ is closely related to 
its largest singular value λ1.  1Γ λ≤  because  

 

( ) ( )
( )
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1 2 1 2

1 2

1 2

1 2 1 2

1 1
1 2

( , ) (0,0) ( , ) (0,0)

( , ) 1

( , ) (0,0)

min min

min
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u v u v

u v

u v

n n n n

x y

n n

n n n n

x y

n n

τ λ λΓ

λ λ

≠ ≠

=

≠

= =
+ +

+
= ≤

+

S S S S

S S

S S

 

and since 1 2( , ) 1n n ≥  for integers not both 0.  In the case of an 
orthogonal parameterization (in which 0u vb ≡ =S S

B
), Γ =λ1. 

We also have kΨ ρ≤ where ρ is the surface area of the output 
of the mapping function over D and 2 3 3k ≡ .  This is because 
isotropic hexagonal sampling is most efficient [14], for which 

( ) hex,u v =K V .  For an isometric map, Ψ ρ= . 
In practice, graphics hardware properly reconstructs maps having 
only limited anisotropy, something ignored by the Ψ metric.  For 
example, the 2D shearing transformation ( , ) ( , )S u v u v t u= + has 

1Γ = and thus constant sampling requirement for all t (i.e., no 
matter how much it shears), while ( )2 2 4 2

1 1 2 2 4t t tλ = + + +  
which increases as t increases.  We therefore define another 
measure of sampling efficiency which models hardware without 
any anisotropic reconstruction filtering; i.e., only performing iso-
tropic reconstruction filtering based on largest stretch.  The 
stretch sampling requirement, ϒ , is defined 

2* *
1 1 1( , )

where max ( , )
u v

A u vϒ λ λ λ
∈

≡ ≡
D
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Then 1λ Γ ϒ Ψ≥ C ≥ .  The smaller singular 
value is ignored assuming the source texture has 
been properly bandlimited to account for the 
worst case stretch ( *

1λ ) by prefiltering more over 
the compressed direction corresponding to 2λ .  
Optimizing with respect to this metric then re-
serves the hardware’ s limited anisotropic filtering 
capability to handle distortions arising from the 
perspective transformation and/or reflections 
rather than due to the parameterization.1   

3. Simple Spherical Maps  
We analyze the sampling efficiency and anisot-
ropy of simple projections from cartography [16], 
some of which have appeared in computer graph-
ics.   Where possible, we retain the terminology 
of cartography and relate it to that used in com-
puter graphics. 

3.1 Azimuthal Projections 
Azimuthal projections transform the sphere into a 
tangent or intersecting plane such that parallels 
(lines of constant latitude on the earth) are pro-
jected to circles. Mathematically, these 
projections may be modeled as 

( , ) sin ( ), sin ( ), cos ( )
u v

u v r r r
r r

θ θ θ
D E

= F GH IS (4) 

where 2 2 ,r u v= +  * *, , ,u v r r
J K

∈ −L M  [ ]( ) 0,rθ π∈  arbitrarily 
reparameterizes the parallel spacing, and 0,θ π=  represent the 
poles. Figure 5 summarizes the four most important azimuthal 
projections from cartography: gnomonic, stereographic, Lambert 
equal area, and equidistant, which are illustrated in Figure 4. 
The gnomonic map projects the sphere onto a plane tangent to it, 
using a perspective transformation that looks directly at the point 
of tangency.  It is the projection used in the “ cube map”  spherical 
image [7][15], for each of its six faces.  The gnomonic map pro-
jects great circles on the sphere to straight lines in the map 
domain, an advantageous property for texture coordinate interpo-
lation.  Gnomonic maps can also be directly produced using the 
perspective projection of the rendering hardware.  The stereo-
graphic map is a conformal map that also has the property that 
circles on the sphere project to circles in the domain.  [9] proposes 
dual stereographic maps, one for each hemisphere, to parameter-
ize environment maps.  The Lambert equal area map is an area-

                                                               
1 Unfortunately, this model does not fully account for difficulties from 

anisotropy unless the hardware can isolate the parameterization distor-
tion from the “ real”  (projection) distortion and compensate for pre-
filtering by a larger kernel in the 2λ direction.  This is why we also ana-
lyze each map’ s anisotropy as well as its sampling requirement. 

preserving map also called the “ gazing ball”  or OpenGL map 
[13].  Finally, the equidistant map is a stretch-preserving map that 
also preserves distances to the pole.  Although it has not been 
used in computer graphics, its sampling efficiency exceeds that of 
the other azimuthal projections, as we will demonstrate shortly.  
The local distortion properties of the four maps can be derived 
from (4) using the respective definition of θ(r) from the table. To 
derive the sampling efficiency of these maps, first note that the 
singular values of the projections are invariant over any circle in 
the domain centered at the origin, ( ){ }2 2 2,r u v u v r≡ + =D .  It 
can also be shown that the metric tensor entries are given by 

2 2, ,a u d e c v d e b uvd= + = + =  

where ( )2 2 22
1 2 2, ,d r eλ λ λ≡ − ≡ so d,e ≥ 0.  Then   

( )
1 2

2 2
2 1 2

2 2
1 1 2 2( , ) (0,0)

min 2
n n

n a n n b n c

λ λΓ
≠

=
− +

 

Maximizing 2Γ over a domain circle rD  requires minimizing the 
denominator above, since the numerator is invariant over rD ; 
denote this maximum as 2

rΓ .  Examining the denominator, which 
we denote 2γ , 

    
Original Equidistant Stereographic Gnomonic Lambert Equal Area 

Figure 4: Azimuthal Projections:  Spherical circles having a radius of 3.5° and arranged at intervals of 12.5° in latitude and 22.5° in longitude are projected 
back into parameter space using the four azimuthal projections.   The red circle represents the extent of a hemisphere.  For the gnomonic map, which is unable 
to represent the entire hemisphere in a finite domain, a single face from the cube map is shown in red.  Note that greater mapping stretch is indicated by 
smaller projected circles in the domain since we are projecting constant size spherical circles back into parameter space. 

 Equidistant Gnomonic Stereographic Lambert  
Equal Area 

( )rθ  ( )2 rπ  ( )( )1 2cos 1 1r− + ( )21
2

1cos
1

r
r

− −
+  ( )1 2cos 1 r− −  

properties stretch-preserving great circles 
project to lines 

conformal, circles 
project to circles 

area-
preserving 

r* covers 
hemi,sphere 

[0,1] , [0, 2]  [0, ]∞ , − [0,1] , [0, ]∞  [0,1] , [0, 2]  

1( )λ θ  2π  cosθ  1 cosθ+  2 1 cosθ+  

2 ( )λ θ  ( )2 sincπ θ  2cos θ  1 cosθ+  1 cosθ+  
*
1 ( )λ θ  2π  1 2 2 1 cosθ+  

( ) ( )Ψ θ ϒ θ=  24θ  24 tan θ  ( )216 tan 2θ  ( )216 tan 2θ  

inverse map 
( )1sinc cos

2
f z

u x f

v y f

π −=

=

=

 
u x z

v y z

=
=

 
( )
( )
1

1

u x z

v y z

= +

= +
 

1

1

u x z

v y z

= +

= +
 

Figure 5: Table of Mathematical Properties of Azimuthal Projections. We define 
sinc sinθ θ θ≡ .  Note that the local properties do not vary as a function of the direction of 
the vector (u,v), only as a function of its length r or equivalently, θ.  The maximum larger 
singular value, *

1λ , and the sampling requirement, Ψ , are taken over the portion of the sphere 
from [0, θ], thus allowing analysis of parts of the sphere from the pole to any parallel, such as 
the hemisphere (θ=π/2).  The inverse maps implement the texture coordinate generation re-
quired by graphics systems.  
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( )
( )( )

1 2

1 2

2 22
1 1 2 2

2 2 2
1 2 1 2

( , ) (0,0)

( , ) (0,0)

min 2

min ( )

n n

n n

n a n n b n c

n n e n u n v d

γ
≠

≠

≡ − +

= + + −
 

It can be seen that the minimum value of 2γ over rD , which we 
denote 2

rγ , occurs at 1 2( , ) (0,1)n n = , ( , ) ( ,0)u v r= , since d,e ≥ 0 
and the integer factors can not both be zero.  Thus, 2 2

2 ( )r e rγ λ= =  
so 2 2

1 ( )r rΓ λ= ; in words, for any azimuthal projection, the maxi-
mum spectral stretch over a circle centered at the pole is the same 
as the larger singular value anywhere on the circle.  So the spec-
tral and stretch sampling requirements agree.  
The sampling requirement tabulated in Figure 5 is then given by 
the domain area times the square of the maximum 1λ ; i.e., 

22 * *
1 1 1[0, ]

( ) ( ) 4 ( ) ( ) where ( ) max ( )r
ϕ θ

Ψ θ ϒ θ θ λ θ λ θ λ ϕ
∈

= = ≡  

While this domain is properly a disk in 2D, we take its area as 
24r  rather than 2rπ to calculate efficiency, assuming the disk 

samples must be embedded in a square to allow a practical index-
ing scheme.  Because the equidistant map is stretch-invariant, its 
maximum spectral stretch does not depend on θ, and thus has 
optimal sampling efficiency among all azimuthal projections.   
Figure 7 graphs sampling requirements of the various azimuthal 
maps for portions of the sphere up to a hemisphere.  A single 
gnomonic map can’ t encompass the entire hemisphere; its sam-
pling requirement is unbounded.  The equidistant map has 

( ) ( )22 4 2 9.87Ψ π π= ≈  while both the stereographic and equal 
area maps have ( ) ( )22 16 tan 4 16Ψ π π= = .  To cover the 
sphere, it is more efficient to use two maps each covering a hemi-
sphere (called a dual projection) rather than a single one covering 
the entire sphere.   The dual equidistant map has sampling re-
quirement ( )2 2 19.74Ψ π ≈ . 
The sampling efficiency of a set of gnomonic maps, one for each 
face of a polyhedron circumscribing the unit sphere, is given by 
the surface area of that polyhedron.  This is because the maximum 
spectral stretch of the gnomonic map is 1 and occurs at the center 
(pole) of the projection within each face; the domain area is the 
same as the area of the face.  The following table lists the sam-
pling requirements, Ψ , and maximum anisotropies, 

*

( , )
max ( , )
u v D

u vα α
∈

≡ , of gnomonic map sets generated from the 
platonic solids to cover the sphere.  It assumes triangular faces 
can be represented without wasting texture area:  

Solid Ψ  *α  Components 
tetrahedron 41.57 3.00 4 
cube 24 1.73 6 
octahedron 20.78 1.73 8 
dodecahedron 16.65 1.26 12 
icosahedron 15.16 1.26 20 

Note that the sampling efficiency of dual equidistant maps is still 

better than the octahedral gnomonic map set.  By using gnomonic 
maps derived from tessellations of more and more faces, we can 
approach but never attain the sampling requirement of an isomet-
ric map of 4π . 
Considering the anisotropy of the azimuthal mappings, the stereo-
graphic map is best since it is conformal, but the equidistant map 
exhibits little anisotropy for angles less than about 45°, where it 
has ( 4) 2 4 1.1α π π= ≈ .  This can be compared to its still rea-
sonable anisotropy at the equator, ( 2) 2 1.57α π π= ≈ .  
Gnomonic maps have worst-case anisotropy at the greatest angu-
lar distance from the pole.  For example, the cube map has 

* 3 1.73α = ≈  at the cube vertices. 

3.2 Cylindrical Projections 
Cylindrical projections transform the sphere to a tangent or inter-
secting cylinder such that parallels are projected to straight lines, 
with the model 

( ) ( )( )( , ) cos 2 cos ( ), sin 2 cos ( ), sin ( )u v u v u v vπ θ π θ θ=S  

where [ 1 2,1 2],u ∈ −  ( ) [ 2, 2],vθ π π∈ −  ( )vθ  arbitrarily repar-
ameterizes the parallel spacing, and where 2θ π= ±  represent 
the poles, and θ = 0  the equator.   Three important cylindrical 
projections, the plane chart, equal area, and Mercator, are illus-
trated in Figure 6 with mathematical properties in Figure 8. 
The plane chart is the standard latitude/longitude parameteriza-
tion of the sphere.  It is also stretch-preserving.  As its name 
implies, the equal area cylindrical projection preserves area.  
Finally the Mercator projection is a conformal projection useful 
for navigation since it projects loxodromes on the sphere, or 
curves making a constant angle with the meridians, into straight 
lines.  Since all cylindrical projections are orthogonal, their spec-
tral stretch is identical to their larger singular value, so the two 
sampling metrics agree. 
To analyze sampling efficiency, we consider the portion of the 
sphere from the equator to an angle 2θ π≤ .  The sampling re-
quirement tabulated in Figure 8 and graphed in Figure 9 is 

2* *
1 1 1[0, ]

( ) ( ) ( ) ( ) where ( ) max ( )v
ϕ θ

Ψ θ ϒ θ θ λ θ λ θ λ ϕ
∈

= = =  

  
(a) Plane Chart (b) Equal Area (c) Mercator 

Figure 6: Cylindrical Projections: Spherical circles are distributed as 
defined in Figure 4, and projected into the parameter space of the three 
cylindrical mappings.  u values are charted horizontally and v values 
vertically.  Note that the Mercator projection has an unbounded domain in 
v, but only the spherical area very close to the poles is greatly stretched: 
the 3.5° spherical circles surrounding the poles map to the horizontal lines 
shown at the top and bottom. 
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Figure 7: Sampling Requirements of Azimuthal Maps as a Function of 
Angular Coverage. 
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since the domain area is equal to (1 2 1 2)v v− − = .  The plane 
chart is most sampling-efficient because it is stretch-invariant, just 
as the equidistant map is best among azimuthal projections. Cov-
ering the hemisphere using the plane chart has sampling 
requirement ( ) ( )2 2 2 9.87Ψ π π π= ≈ , identical to that of the 
azimuthal equidistant map.  The other two maps have unbounded 
sampling requirement for hemispherical coverage. The cylindrical 
equal area map has very poor sampling efficiency for any angular 
coverage, while the Mercator projection, at least for angles not 
more than about 45°, is only slightly worse than the plane chart, 
with the advantage of conformality.  
At small angles from the equator, the plane chart has little anisot-
ropy.  But its anisotropy increases without bound near the pole 
making it a poor choice for MIPMAP texturing.  The area-
preserving map has poor anisotropy as well as sampling effi-
ciency. 

3.3 Low-Distortion Equal-Area Map 
We also present an unusual sphere mapping developed for use in a 
stochastic ray tracer.  This mapping was designed to project strati-
fied and other specialized sampling patterns onto the sphere and 
to project spherical samples into 2D histogram bins.  To solve 
those problems, the mapping had to be a bijection between the 
unit square and the unit sphere, area-preserving, and not severely 
anisotropic.  Its projection, 1( , ) ( , , )u v x y z−= S , is defined by the 
composition of three area-preserving bijections.  The first is a 
mapping from a hemisphere to a disk: ( , ) ( , ) 1u v x y z= + .  The 
second mapping is from a disk to a half disk: ( , ) ( , 2)r rθ θ′ ′ = . 

Thus the two halves of a sphere are converted 
into half disks, which are joined to form a sin-
gle disk.  The third mapping is Shirley's area-
preserving bijection between the disk and the 
unit square [18].  This leaves us with an image 
of the sphere on the unit square, where the 
north and south pole are both mapped to the 
center of the square.  If we roll the mapping 
halfway, the north pole will be on one edge of 
the square, the south pole on the opposite edge, 
and the interior of the square will be C0 con-
tinuous.  See Figure 11d for the mapping 
applied to the image of the earth. 
Numerical analysis of this mapping shows the 
spectral sampling requirement to be 19.7Ψ ≈ ,  
about the same as the plane chart and dual 
equidistant mappings. But its stretch sampling 
requirement is much worse at 43.9ϒ ≈ , the 
only map described where these metrics dis-
agree.  Its worst-case isotropy is about 0.29. 

4. Polar-Capped Maps 
Azimuthal and cylindrical projections are com-

plimentary, in that azimuthal projections tend to have better sam-
pling efficiency and less anisotropy near the pole, while 
cylindrical projections are better near the equator.  We can there-
fore improve both sampling efficiency and anisotropy with a 
three-component map set that uses an azimuthal projection for 
each of the two poles and a cylindrical projection near the equa-
tor, called a polar-capped map. 
To create an optimal stretch-invariant polar-capped map, we ex-
amine the sampling requirement of a two-component map 
covering the hemisphere, containing a plane-chart projection near 
the equator and an azimuthal equidistant projection near the pole.  
The sampling requirement of such a map is given by 

( )2
capped equi plane( ) ( ) ( 2 ) 4 2 2M M Mθ θ π θ θ π π θ≡ + − = + −  

where θ is the angle from the pole where the equidistant projec-
tion transitions to the plane chart.  We seek θ  minimizing the 
sampling requirement, which occurs at * 45θ ≡ °  for which the 
sampling requirement is 23 4 7.40π ≈ .   
To cover the entire sphere, we can therefore continue the equato-
rial map to the southern hemisphere and add a third equidistant 
map covering the south pole to produce a polar-capped map with 
sampling requirement of roughly 14.80 and maximum (worst-
case) anisotropy of * 1.41α ≈ (occurring at the 45° parallel of the 
plane chart).  This represents an improvement of 54% over the 
dual stereographic map, 38% over the cube map (but with half as 
many map components and much less anisotropy), and 25% over 
the dual equidistant or plane chart maps (but with much less ani-
sotropy).  It is even a slight improvement (2.4%), over the 
unwieldy 20-map icosahedral gnomonic set!  Moreover, no map 
can save more than 26% over its sampling requirement 
The domain structure for the stretch-invariant polar-capped map is 

 Plane Chart Equal Area Mercator 

( )vθ  2 vπ  1sin v−  ( )( )1sin tanh 2 vπ−  

properties stretch-preserving area-preserving conformal 
v covers  
sphere [ 1 4,1 4]−  [ 1,1]−  [ , ]−∞ ∞  

1( )λ θ  2π  ( )max 1 cos , 2 cosθ π θ  2 cosπ θ  

2 ( )λ θ  2 cosπ θ  ( )min 1 cos , 2 cosθ π θ  2 cosπ θ  

*
1 ( )λ θ  2π  ( )max 1 cos , 2θ π  2π  

( ) ( )Ψ θ ϒ θ=  2π θ  ( )2 2max 1 cos , 4 sinθ π θ  
( )

( ) ( )( )
12 tanh sin

ln 1 sin 1 sin

π θ

π θ θ

−

= + −
 

inverse map 
( ) ( )
( ) ( )1

atan 2( , ) 2

sin 2

u y x

v z

π

π−

=

=
 ( ) ( )atan 2( , ) 2u y x

v z

π=
=

 

( ) ( )
( )

( ) ( )( ) ( )

1

atan 2( , ) 2

tanh 2

ln 1 1 4

u y x

v z

z z

π

π

π

−

=

=

= + −

 

Figure 8: Table of  Mathematical Properties of Cylindrical Projections.  The maximum singu-
lar value and sampling requirement are taken over the part of the sphere from [0, θ]; i.e., from the 
equator to the θ parallel.  Local properties of the cylindrical projections are invariant with respect 
to u, depending only on v or inverting, θ. 
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Figure 9: Sampling Requirements of Cylindrical Maps as a Function 
of Angular Coverage. 

E N S1/δ
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Figure 10: Stretch-Invariant Polar-Capped Map: The rectangle E 
represents the plane chart equatorial map, whose vertical resolution 
matches that of the two azimuthal equidistant polar caps, labeled N and S. 
Such a map with sample spacing δ produces a minimum sampling spectral 
radius of * 2∆ δ= , for a sampling requirement of ( ) 23 2 14.8π ≈ . 
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shown in Figure 10.  Polar-capped maps can also be defined that 
are conformal (to avoid anisotropy) and hexagonally reparameter-
ized (to improve sampling efficiency slightly at the expense of 
greater anisotropy) [22]. 

5. Results 
Figure 11 illustrates five texture maps of the earth with identical 
texture area: stretch-invariant polar-capped (a), gnomonic cube 
(b), dual stereographic (c), low distortion area preserving (d), and 
Lambert equal area (e).  Note particularly the sizes of various 
features such as the polar ice caps.  For example, it can be seen 
that the gnomonic cube (Figure 11a) shrinks Anarctica, and thus 
will sample that area less effectively than the polar-capped map 
(Figure 11b).  The dual stereographic map (Figure 11c) reduces 
Anarctica still further. 
Figure 12 compares the maps using a high-frequency test pattern 
on the sphere.  This pattern is first sampled into texture maps of 
identical area for each of the 5 example maps.  We then generate 
orthographic views of the sphere textured with each of these re-
sults, shown in the top row.  We chose a view where the south 
pole has been rotated towards the viewer by 45° so that both polar 
and equatorial regions are visible.  The row below zooms in on 
the south pole of the row above which represents a “ bad spot” , or 
most undersampled region, for each of the maps.2  
Our sampling efficiency metric is based on worst-case frequency 
preservation using the principle that all parts of the sphere must be 
sampled well to avoid visual artifacts.  The bottom row of Figure 
12 validates the mathematical ranking of the maps which decrease 
in sampling efficiency from left to right.  Discriminating between 
the low distortion equal area (LDEA) map and the gnomonic cube 
is difficult.  This is probably because we applied the spherical 
texture using bilinear filtering to simulate typical graphics hard-
ware, which penalizes the more highly anisotropic LDEA map.   
The top row shows the polar-capped map’ s sharpness uniformity 
over the entire sphere.  The other maps have noticeable patches of 
blurriness near the south pole. 

6. Conclusions and Future Work 
Mapping functions used to represent spherical images in graphics 
systems are less than optimal in terms of sampling efficiency.  
This paper defines the notion of sampling efficiency and analyzes 
existing and new maps in terms of sampling efficiency and local 
anisotropy. We introduce pieces of projections used in cartogra-
phy to form two- and three-component maps that have better 
sampling efficiency than the best map used previously, with little 
or no anisotropy.    Implementation involves replacing the texture 
coordinate generation function with a simple alternative. 
We believe the sampling efficiency metric can be extended to 
Monte Carlo integration for rendering.   Stratified stochastic sam-
pling seeks to scatter as few samples as possible to arrive at an 
integral estimate with greatest confidence, and often uses global 
mapping functions from simple domains [1][12].  While area-
preserving mappings as in [1] assure that all samples contribute 
equally to the integral estimate, maps with much local stretch, a 
typical consequence of area-preserving mapping to surfaces with 
curvature, increase variance (i.e., reduce the effectiveness of 
stratification).  How should these considerations be balanced?  A 
surface integral of spectral stretch, rather than a simple maximum, 
may be the right comparison metric for mappings used for inte-
grating rather than tabulating functions over surfaces. 

                                                               
2 The polar-capped map has no bad spot.  The other maps have bad spots 

at both poles or at the south pole (Lambert). 
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Figure 11: Texture Maps of the Earth 
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Figure 12: Results on Spherical Test Pattern 


