
Some Regularization Problems in Ray Tracing

John Amanatides
Don P. Mitchell

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Abstract

Ray tracers that render CSG models should consider
issues of regularization and numerical accuracy. The
special case of rays originating on surfaces (shadow
probes, reflections, and refractions) present a regular-
ization problem that is significant—even in ray tracers
which are not explicitly based on the CSG scheme.
An analysis of this problem yields a better solution
than the epsilon tests incorporated in most ray tracers.

2. Introduction

Ray tracing is a simple and straightforward method of
rendering images of solids described by the Construc-
tive Solid Geometry scheme. This is because the
problem of Boolean combinations of solids is reduced
to one dimension.

Tw o complications arise, however. Set operations on
solids should be regularized [Requicha80], and finite-
precision machine arithmetic introduces error into the
ray-intersection calculation. Simple proximity-regu-
larization rules can be developed which tolerate some
inaccuracy, but these rules can produce unwanted side
effects.

Even in ray tracers which are not explicitly based on
the CSG scheme, there is a regularization and accu-
racy problem that is important. That is the case of
rays originating on the surface of a solid (for shadow
calculation, reflection, or refraction).

For these rays, proximity-regularization rules are not
unlike fixes in many ray tracers (which eliminate
intersections too close to the origin of the ray), but
they can still result in some bad pixels. We dev elop
more robust heuristics to improve the effectiveness of
these regularization rules.

3. Ray Intersection and Parametric Sequences

In ray tracers, the primary geometric computation is
finding the intersection of rays with a solid. The inter-
section of geometric sets with CSG-defined solids can
be computed by recursive divide-and-conquer algo-
rithms [Tilove80], and this approach has been used to
ray trace CSG models [Roth82].† The general idea is
that if the intersection of a ray with two solids A and
B is known, then the intersection with some Boolean
combination (e.g., A ∪ B, A ∩ B, or A − B) can be
inferred.

To describe such an algorithm in more detail, we
begin by developing representations of rays and their
subsets. Given an origin point O (in an affine space)
and a direction vector D, the points of a ray can be
defined parametrically:

R = {O + t D | 0 ≤ t ≤∞} (1)

The intersection of a ray R with a solid S will be
some subset of the ray, which can be represented by a
parametric sequence. In our notation, this is a non-
decreasing sequence of ray parameter values ti corre-
sponding to transitions between inside and outside the
set R ∩ S.

† Formal treatments like Tilove’s are based on the
concept of classification, rather than intersection. The
classification of a ray R with respect to a solid S is a
partitioning of the ray into RinS, RonS, and RoutS,
which are points inside S, on its boundary, or outside the
solid. We will simply discuss the problem in terms of
ray intersection.

•

•
•

•

•

A

B

C

D

E

Figure 1. Rays Intersecting a Solid

Figure 1 illustrates a number of interesting cases of
ray intersection. The circle can be thought of as rep-
resenting a solid sphere or a hollow bubble in a
unbounded solid. In both cases, the object is closed,
meaning that the boundary is part of the solid. The
table below giv es parametric sequences corresponding
to the ray intersections shown above.

Ray Ray ∩ Sphere Ray ∩ Bubble

A () (0)

B (0, t1) (0, 0, t1)

C (0, 0) (0)

D (0, t1) (t1)

E (t1, t2) (0, t1, t2)

Table 1. Parametric Sequences Associated with Ray
Intersections

In our notation, the first element of a parametric
sequence always represents the first transition from
outside R ∩ S to inside. Thus, when ray E intersects
the bubble, the first inside section begins at the ray
origin where t = 0. In this case, [0, t1] represents an
inside segment, the open interval (t1, t2) is outside,
and [t2,∞] is inside.

The two simplest parametric sequences are (), which
represents an empty intersection, and (0), which rep-
resents the whole ray.

An unusual case is the intersection of ray C with the
sphere. The sequence (0, 0) indicates that a single-
point interval [0, 0] is inside the intersection (because
the ray origin is on the boundary), and the interval
(0,∞] is outside.

In Roth’s divide-and-conquer algorithm, the intersec-
tion of a ray with a Boolean combination A B is
inferred by merging the parametric sequences of the
intersections with A and B [Roth82].

Earlier ray tracers also rendered CSG models, but
with less efficient algorithms based on point intersec-
tion [Goldstein71]. In its simplest form, the point-
intersection algorithm must find all primitive intersec-
tions and sort them. At that point, it has often done
about the same amount of work as Roth’s divide-and-
conquer algorithm. It must then make the additional
effort of calculating point intersections to find the
closest primitive intersection that is part of the CSG
model.

4. Regular Closure and ON/ON Ambiguity

A formal analysis of solid representation introduces
some complications in the divide-and-conquer inter-
section algorithm. Not all sets of points in space are
what we naturally think of as "solid objects". A col-
lection of isolated points, lines or surfaces are not
examples of solids, because they hav e no volume.
Even connected subsets with a volume can be unsatis-
factory. For example, the object in Figure 2 has a
dangling face:

Figure 2. Solid with Dangling Face

Using elementary concepts from topology, a mathe-
matical definition can be found which matches our
intuitive notion of a proper solid [Requicha80]. A set
of points in space S ⊂ R3 is a regular solid, if it is
equal to its regular closure. The regular closure of a
set is the closure of its interior:

S ≡ S° (2)

This is equivalent to removing the boundary† of the
set and then closing it—by adding a new boundary. In
the case of the object pictured in Figure 2, removing
the boundary of the set would remove the dangling

† A point is on the boundary of a set if every neigh-
borhood of the point is partially inside the set and par-
tially out.

face and leave an open cube. Adding a new boundary
would leave a closed cube, which is what we want.

Regular solids will always be made from Boolean
combinations of regular solids if the Boolean opera-
tions are "regularized", as for example:

A ∩* B ≡ (A ∩ B)° (3)

In addition to maintaining regular closure, another
important formal consideration is ON/ON ambiguity.
Imagine two blocks, A and B, which can make face-
to-face contact in two ways:

A
B • P

Case I

A
B

Case II

•P

Figure 3. Point on Common Boundary of Two Objects

If the point P were in the interior or exterior of all
primitive solids, then it is straightforward to decide
whether it is in some Boolean combination of solids.
However, when P is on the boundary of two solids,
there is ambiguity about the result of regularized
Boolean combinations.

Consider the example of A ∩ B. If we ignore regular-
ization, then this intersection is always nonempty at
point P. But the value of A ∩* B is nonempty in case
I and empty in case II. This is because, in case II, the
nonregularized intersection results in a dangling face.

5. Some Topological Issues in Ray Tracing

Tw o classes of problems in ray tracing will be dis-
cussed in this paper. First, there are topological issues
that would need to be considered even if the ray trac-
ing computation were performed with perfect accu-
racy. Secondly, there are problems that arise from the
limited accuracy of machine arithmetic. The purely
topological issues will be discussed in this section.

Parametric sequences represent subsets of a ray, and
the ray is a one-dimensional subset of R3. In this 1-D
subspace (with its relative topology), regular closure
will have the effect of removing isolated points. It

would also remove isolated single-point gaps, but they
should not arise from regularized Boolean operations
on closed sets. 1-D regular closure can be imple-
mented by a re write rule for parametric sequences.
The rule is simply to delete adjacent pairs of identical
parameter values in a sequence. For example:

(. . . ti − 1, ti , ti , ti + 1, . . .) (4)

→ (. . . ti − 1, ti + 1, . . .)

Regularization in a 1-D subspace along the ray inter-
section is not equivalent to intersecting a ray with a
regularized solid. That is, given a ray R and a solid S:

R ∩ S° ≠ (R ∩ S)° (5)

The following figure shows examples of where 1-D
regularization works and where it fails.

B
A

B
A

C

Case I Case II

Case III

Figure 4. Ray Intersecting with Boundaries and Cor-
ners

In case I, a ray passes thru the common boundary
between A and B. Assume that we wish to find the
intersection of the ray with A ∩ B. A properly
designed divide-and-conquer intersection routine
would yield a merged parametric sequences of the
form (t1, t1) representing the passage of the ray thru
the dangling face in A ∩ B, and 1-D regularization
would reduce this to the empty sequence (). That is
correct, because in this case A ∩* B would be the
empty set.

In case II, the ray lies on the common boundary. The

parametric sequence for the ray intersection with
A ∩ B is now a finite segment (t1, t2), and 1-D regu-
larization will not change it. This is incorrect; the
sequences should be () as in case I.

In case III, the ray passes thru a vertex point. The
parametric sequence for the ray intersection would be
(t1, t1), and 1-D regularization would reduce this to
the empty sequence (). That is incorrect, because the
corner of C is a legitimate part of the regular solid.

The failures of 1-D regularization are due to ON/ON
ambiguity. It would be possible to correct these fail-
ures by augmenting the parametric sequences with
3-D neighborhood representations [Reqicha85]. Case
II could be corrected by including 3-D edge-neighbor-
hood representations (i.e., the contents of sectors of
the cylinder surrounding the ray segment). Case III
would require more complex vertex-neighborhood
information, in order to be corrected. Case I suc-
ceeded because the parametric sequence implicitly
contained the necessary face-neighborhood informa-
tion.

Managing full 3-D neighborhood information in para-
metric sequences would greatly increase the complex-
ity of the ray-intersection calculation. We agree with
Roth that it is not practical or necessary to do this
[Roth82]. The cases where 1-D regularization fails
are improbable (e.g., a ray lying on a dangling face).
In addition, these failure cases should not have a
major effect on the appearance of an antialiased image
because they affect a zero-measure subset of the view-
plane.

Finally, we would like to point out an important spe-
cial case of 1-D regularization. In ray tracers support-
ing Whitted’s shading model [Whitted80], shadows,
specular reflection, and refraction are simulated by
casting secondary rays from points of intersection on
the surface of objects. When these rays start from a
surface and go outward, their intersections will result
in parametric sequences of the form:

(0, 0, . . .) (6)

As in Figure 1 (rays B and C), a pair of zeros begins
the sequence because the ray intersects the solid that it
originates on. This self intersection is not desired (we
don’t want a surface to shadow itself), and 1-D regu-
larization conveniently removes the pair of zeros.

6. Some Numerical-Accuracy Issues in Ray Trac-
ing

Of course, ray tracing programs do not perform calcu-
lations with perfect accuracy. The use of finite-preci-
sion machine arithmetic introduces errors in the
results of ray intersection calculations.

Plate 1 is a visualization of a typical situation of a
numerical intersection of a ray with a surface. Here,
the neighborhood of an actual ray intersection is
examined at the resolution of machine accuracy. The
red sphere is the calculated point of intersection of a
ray with an implicit surface F(x, y, z) = 0. The white
spheres represent points where a floating-point evalua-
tion of F is exactly equal to 0.0. We see that the inter-
section point is not actually on the zero-set of the
function, and we also see that the zero-set is not a
well-behaved surface.

This inaccuracy (and the discreteness of hardware
floating-point numbers) makes it numerically (and
topologically) impossible to realize the ideal regular-
ization of solids discussed above. For example, in
Case I of Figure 4, the result of computing the ray
intersection with A ∩ B is likely to produce a para-
metric sequence like (t1, t1 + ε), for some small ε .

One approach to this problem is to redefine regular
closure in a way that allows from some error toler-
ance. Proximity regularization peels off an ε -thick
layer from the surface of a solid, and then adds an
ε -thick layer to the result. This is analogous to taking
the interior and then closure of a set in regularization
in R3. It is straightforward to define a 1-D proximity
regularization in terms of rewrite rules on parametric
sequences:

(. . . ti − 1, ti , ti + ε , ti + 1, . . .) (7)

→ (. . . ti − 1, ti + 1, . . .)

Proximity regularization consists of applying this
rewrite rule, first to inside intervals (where the ti value
appears in an even-numbered position in the
sequence), and then to outside intervals. Some form
of proximity regularization has been used in CSG ray
tracing and in CSG z-buffer algorithms [Wyvill86,
Rossignac86].

We make no recommendation on whether one should
apply this 1-D regularization in general. There are
many things wrong with proximity regularization.

The maximum value of ε is difficult to determine
objectively, and often results from trial-and-error. In
addition, this type of regularization tends to remove or
"erode" thin objects and thin parts of objects.

However, a particular situation definitely requires
some form of regularization—rays originating on the
surface of objects. Ideally, intersection of such rays
with the model should result in parametric sequences
that begin with zero (see ray B and C in Figure 1).
However, as Plate 1 suggests, they will rarely occur
when shadow rays, reflection rays, and refraction rays
are cast. Even when the best numerical methods are
used, more typical situations are illustrated in Figure
5.

outside
inside

A

B

C

D

Figure 5. Secondary Rays from Inaccurate Surface-
Intersection Points

The upper half of Plate 2 shows the result of perform-
ing shadow calculations with no regularization. The
black spots on the surface are regions where the
shadow rays happen to be like ray C in Figure 5. It
intersects the surface that it was suppose to originate
from, and so that part of the surface is in shadow.

Similar problems can happen with refraction and
reflection. All working ray tracers must have some fix
for this problem. Usually, there is a test that rejects
intersections that are too close to the origin of a ray.
More formally, we would like the rays in Figure 5 to
act as if they really originated from on the surface.
The following special proximity regularization rules
can accomplish that:

(0, ε , . . .) → (0, 0, . . .) → (. . .) (8a)

(ε , . . .) → (0, . . .) (8b)

Rule (8a) deals with rays exiting a surface (e.g., ray C
in Figure 5), such as shadow rays or external reflec-
tions. Rule 8b deals with rays penetrating the solid

(e.g., ray B), such as internal reflections or refraction
of an external ray into glass. The lower half of Plate 2
shows an image generated using these rules, and the
defects have been repaired.

7. Improved Heuristics for Proximity Regulariza-
tion

The rewrite rules, (8a) and (8b), are adequate to give
good behavior for shadows, reflections and refraction
so long as the local neighborhood of the ray origin is
fairly flat. However, the upper half of Plate 3 shows
some bad pixels which occur in the vicinity of a cor-
ner inside a block of glass.

C

C ′

B

A

Doutside

inside

Figure 6. Failure of Proximity Rules Near a Corner

Figure 6 illustrates the problem that is occurring. We
want the internal reflection of ray C to occur. But if B
is too short, rule (8a) will throw away the intersection
with the top face, and some further intersection (if
any) in the direction C ′ will be used instead.

However, in the case of ray D, the same proximity
rule was beneficial and allowed a refracting ray to exit
the object as we would wish. The difference between
ray B and ray D is that we "expect" ray D to give a
parametric sequence of the form (0, 0, . . .) because we
know that it is starting on a surface and heading away
from the solid. On the other hand, ray B is an internal
reflection and we expect a parametric sequence of the
form (0, . . .), where some nonzero intersections may
follow the first element in the sequence.

The proximity rule (8a) should only be applied when
we expect the ideal parametric sequence to be
(0, 0, . . .), and rule (8b) should only be applied when
we expect (0, . . .). For shadow probes, reflections,
and refractions, our expected result depends on
whether the parent ray is on the inside of the solid

(like ray A in figure 6) or on the outside.

Given Expected

parent shadow reflection refraction

outside (0, 0, . . .) (0, 0, . . .) (0, . . .)

inside (0, 0, . . .) (0, . . .) (0, 0, . . .)

Table 2. Expected Form of Secondary-Ray Intersec-
tions

It may not seem to make sense to have a shadow ray
associated with an internal parent ray, but this is
required to correctly compute transmission highlights
(an extension to Whitted’s model introduced by Hall
and Greenberg [Hall83]).

We hav e found that it is sufficient to execute the prox-
imity rules only after intersection with the primitive
solids at the leaves of the CSG tree. It is important to
keep track of set-difference operations. If an odd
number of set-difference operators are above a primi-
tive, then the inside/outside sense of the parent ray
must be reversed.

The lower half of Plate 3 shows how these new prox-
imity rules eliminate the problem near the corner of
the glass block.

8. Conclusions

We hav e taken another look at some fundamental
topological and numerical issues in ray tracing. Para-
metric-sequence notation is introduced to facilitate the
discussion of these issues in the context of ray tracing.

We agree with Roth, that full 3-D regularization with
neighborhood representations is unnecessary in ray
tracers. A 1-D version of proximity regularization can
partially simulate true regularization, but we are not
sure if the side effects of this approximation are better
than the benefits.

It is necessary to apply some form of regularization to
the case of rays originating on the surface of objects.
This was the one regularization issue that caused real
problems for us in the recent development of a ray
tracing system. We hav e found a more robust form of
proximity regularization for this special case. This
has allowed us to make good images using only sin-
gle-precision arithmetic.

9. References

[Goldstein71] Goldstein, Robert A. and Roger Nagel,
"3-D Visual simulation", Simulation, Vol.
16, No. 1, January, 1971, pp 25-31.

[Hall83] Hall, Roy and Donald P. Greenberg, "A
Testbed for Realistic Image Synthesis",
IEEE CG&A, Vol. 3, No. 8, November
1983, pp 10-20.

[Requicha80] Requicha, Aristides A. G., "Representations
for Rigid Solids: Theory, Methods, and Sys-
tems", ACM Computing Surveys, Vol. 12,
No. 4, December, 1980, pp 437-464.

[Requicha85] Requicha, Aristides A. G. and H. B. Voel-
cker, "Boolean Operations in Solid Model-
ing: Boundary Evaluation and Merging
Algorithms", Proc. IEEE, Vol. 73, No. 1,
January, 1985, pp 30-44.

[Rossignac86] Rossignac, Jaroslaw R., Aristides A. G.
Requicha, "Depth-Buffering Display Tech-
niques for Constructive Solid Geometry",
IEEE Computer Graphics and Applications,
September, 1986, pp 29-39.

[Roth82] Roth, Scott D., "Ray Casting for Modeling
Solids", Computer Graphics and Image
Processing, Vol. 18, No. 2, February, 1982,
pp 109-144.

[Tilove80] Tilove, Robert Bruce, "Set Membership
Classification: A Unified Approach to Geo-
metric Intersection Problems", IEEE Trans.
Computers, Vol. C-29, No. 10, October
1980, pp 874-883.

[Whitted80] Whitted, Turner, "An improved illumination
model for shaded display", Comm. ACM,
vol. 23, No. 6, June 1980, pp 343-349.

[Wyvill86] Wyvill, Geoff, et al, "Space Division for
Ray Tracing in CSG", IEEE Computer
Graphics and Applications, April, 1986, pp
28-34.

