
Robust Ray Intersection with Interval Arithmetic

Don P. Mitchell

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Abstract

This paper discusses a very general root-isolation
algorithm, based on interval arithmetic, which can
find real roots in a large class of analytic functions.
This algorithm has been used successfully to generate
ray-traced images of a variety of implicit surfaces.

2. Introduction

One of the fundamental operations in ray tracing is
the calculation of intersections between rays and
primitive solids or surfaces. This generally reduces to
the problem of solving for roots of an equation or a
system of equations, and often the problem is nonlin-
ear.

The details of the numerical problem depends to a
large extent on how the primitive solid or surface is
represented. An indirect definition of the points in a
solid or surface is given in an implicit surface, defined
by a scalar-valued function F :

S = { (x, y, z) | F(x, y, z) = 0 } (1)

The other major type of representation gives an
explicit formula for generating the points of the solid
or surface, such as a patch of a parametric surface.

S = {(x(u, v), y(u, v), z(u, v)) (2)

| u0 ≤ u ≤ u1, v0 ≤ v ≤ v1}

This paper is concerned with the case of implicit sur-
faces. In this case, the ray/solid intersection problem
reduces to the problem of finding roots of a single
equation in one variable. Given a ray represented
parametrically by a starting point S and a direction
vector D, a simple substitution gives an equation in

the ray parameter t:

F(x, y, z) = F(Sx + tDx , Sy + tDy , Sz + tDz) (3)

= f (t)

The surface of this solid is represented by points
where F is zero, and intersections of the ray with the
surface correspond to parameter values where f is
zero. If f is a polynomial of degree less than five,
then closed-form expressions for the roots exist (altho
it may not be a sound numerical method to use the
formulae of Cardan or Ferrari to solve cubic and quar-
tic equations).

For more general types of equations f (t) = 0, the
problem of finding roots can be divided into two
steps. First the roots must be isolated by finding
intervals [ti , ti+1] which are known to contain one and
only one root of the function. Secondly, the intervals
about each root can be refined by reducing the size of
the isolating interval until the root is located as accu-
rately as possible using machine arithmetic.

The problem of root isolation is the more difficult
problem. The problem of root refinement is well
understood, and efficient, stable algorithms exist for
locating a single root within an interval. A refinement
algorithm as simple as bisection could be used, but
faster methods exist which are equally reliable
[Press88].

If f (t) is a polynomial, there are a number of root
finding methods. To find all of the complex roots of a
polynomial, the Madsen-Reid algorithm is a current
favorite [Madsen75].

For finding real roots of polynomials, root isolation
methods based on Rolle’s theorem, Budan’s theorem,
Descartes’ rule of signs, and Sturm’s theorem have all

been demonstrated [Collins82]. Some of these algo-
rithms have been applied to ray tracing algebraic sur-
faces. Hanrahan has used a method based on
Descartes’ rule [Hanrahan83], and Sturm’s theorem
has been used by two others [Wijk84, Duff88]. Duff
reports that his implementation of a Sturm-sequence
root finder was much faster than the Madsen-Reid
algorithm and also faster than the method used by
Hanrahan.

For functions more general than polynomials, there
are fewer results. An heuristic for root isolation has
been proposed which estimates bounds on the value of
a function in an interval from samples [Jones78].
This heuristic can fail, but other methods are based on
guaranteed upper and lower bounds on a function.

Very few attempts have been made to ray trace non-
algebraic surfaces. Blinn demonstrated an heuristic
method for ray tracing Gaussian density distributions
[Blinn82]. Kalra and Barr have demonstrated a robust
root isolation algorithm that works on functions for
which a Lipschitz condition for f and its derivative
can be found within given intervals of the range
[Kalra89].

3. The Interval Root Isolation Algorithm

Interval analysis has proven successful for finding real
roots of systems of nonlinear equations [Kearfott87].
Toth used such an algorithm to ray trace parametric
surfaces [Toth85]. The algorithm he used was based
on the idea of subdividing parameter space until safe
starting regions were found for an iterative root-
refinement method.

Ray tracing implicit surfaces presents an easier, one-
dimensional problem. For this case, Moore gives a
simple and general algorithm for root isolation which
can be applied to rational functions and also to func-
tions involving familiar transcendental functions
[Moore66].

An interval number is represented by a lower and
upper bound, [a, b] and corresponds to a range of real
values. An ordinary real number can be represented
by a degenerate interval [a, a]. It is straightforward to
define basic arithmetic operations on interval num-
bers:

[a, b] + [c, d] = [a + c, b + d] (4)

[a, b] − [c, d] = [a − d , b − c]

[a, b] * [c, d] = [min(ac, ad , bc, bd),

max(ac, ad , bc, bd)]

and if 0 /∈ [c, d]

[a, b] / [c, d] = [a, b] * [1/d , 1/c]

Using the above rules, a rational expression r(x, y, z)
can be evaluated with interval values
[x0, x1], [y0, y1], [z0, z1] for its variables. The result-
ing value may be an interval that is much wider than
the actual range of the corresponding real-valued
expression, but it is guaranteed to bound that range.
That is, for intervals X , Y , Z :

r(X , Y , Z) ⊇ {r(x, y, z) | x ∈ X , y ∈Y , z ∈ Z} (5)

As the intervals X , Y , Z become narrower, a rational
expression converges toward its corresponding real
restriction:

X ′ ⊂ X , implies r(X ′) ⊆ r(X) (6)

and

X = [x, x] implies r(X) = [r(x), r(x)]

Using these concepts, a simple recursive algorithm
can be described for isolating the roots of a function
of one variable. We start with a rational function r
and an initial interval [a, b].

Step 1. Evaluate r([a, b]). If the result-
ing interval value does not contain zero,
then there cannot be a root in [a, b], and
we are finished with this interval.

Step 2. Evaluate the derivative r ′([a, b]).
If the resulting interval value does not
contain zero, then the function must be
monotonic in the interval. If the function
is monotonic and r(a) r(b) ≤ 0, then there
is a root in the interval which can be
refined by some standard method.

Step 3. If r([a, b]) and r ′([a, b]) both
contain zero, then subdivide the interval
at its midpoint and recursively process
[a, (a + b)/2] and [(a + b)/2, b].

Step 4. The process of subdivision
should be stopped when the width of an
interval approaches the machine accu-
racy. For example, if the midpoint tests
equal to either endpoint on the machine
or if the width of the interval is less than
some minimum allowed value.

We see that this algorithm is based on the existence of
a root inclusion test, which checks for the presense of
a single root in an interval. The root inclusion test can
return a value of "yes", "no" or "maybe", and bisec-
tion is performed when the result is "maybe". Many
root-isolation algorithms conform to this paradigm,
whether they use Descarte’s Rule, Lipschitz condi-
tions, or interval arithmetic to test for root inclusion.

The algorithm above is slightly different than the one
described by Moore which assumes that root refine-
ment will also be performed by an interval algorithm.

A discussion of Moore’s algorithm should include the
very important issue of machine arithmetic and round-
off error. I have found that ordinary rounded floating
point arithmetic (in single precision) and ordinary
root-refinement algorithms are sufficient to produce
the images presented below. Howev er, strict bounds
on function variation can be computed even with finite
precision floating point arithmetic if it is done with
outward rounding. This is safer but more computa-
tionally expensive.

4. Application of the Algorithm to Ray Tracing

In the context of ray tracing an implicit surface, the
interval root isolation algorithm is well suited to find-
ing zeros of the function f (t) in (3).

Given the three-dimensional surface F(x, y, z) = 0, it
may be straightforward to derive a closed-form
expression for f (t) and its derivative f ′(t). If so, the
root finding algorithm can be applied directly to the
interval extension f ([t0, t1]).

If f (t) cannot be easily derived in closed form, it is
possible to work directly with the interval extension of
F(x, y, z). Given a ray defined by a starting point S
and a direction D, an interval [t0, t1] can be substi-
tuted into (3) to evaluate the resulting
F([x0, x1], [y0, y1], [z0, z1]).

Similarly, f ′(t) can be derived by taking the interval
extension of the directional derivative of F :

f ′(t) = D ⋅ ∇F(x, y, z) (7)

Given an expression F(x, y, z) in symbolic postfix
form, a simple interpreter can compute an interval
evaluation. By application of the chain rule for differ-
entiation, the value of ∇F(x, y, z) can be computed
concurrently.

The interval root isolation algorithm was described for
rational functions, but it is straightforward to extend
this to include most of the familiar transcendental
functions. For monotonic functions, the interval
extension is trivial:

e[a, b] = [ea, eb] (8)

[a, b]3 = [a3, b3]

For modeling superquadrics, the absolute-value func-
tion is needed, and its interval extension is simply:

|[a, b]| = [0, max(|a|, |b|)] (9)

Many commonly-used transcendental functions like
sine and cosine are made up of monotonic segments
with minima and maxima at known locations. That
information is sufficient to compute exact upper and
lower bounds of an interval extension of a function.

When a ray grazes the surface F(x, y, z) = 0 at a tan-
gent, the corresponding root of f (t) = 0 will be a mul-
tiple root (i.e., the value and some number of the
derivatives of the function will all be zero at the same
point). As the interval root isolation process con-
verges on a multiple root, the derivative will always
be zero in the interval, so the algorithm will not termi-
nate until it reaches a minimum-sized interval (in Step
4 of the algorithm). The algorithm will succeed, but
like many root-finding methods, it is slower in finding
multiple roots.

In order to ray trace concave superquadrics [Barr81],
it is also necessary to deal with singularities in the
derivative. This is because a function such as

r(x) = |x|0.75 (10)

has a singularity in its derivative at x = 0. The singu-
larity results from dividing by zero, and the interval
extension of the division operation must be modified

to return some representation of [−∞, ∞] in this case.

5. Results

In Plate 1, a fourth-degree algebraic surface is ren-
dered with this method. The equation for this surface
is:

4(x4 + (y2 + z2)2) (11)

+ 17x2(y2 + z2) − 20(x2 + y2 + z2) + 17 = 0

Plate 2 shows an example of a non-algebraic analytic
surface—a sum of five Gaussians representing an
arrangement of atoms. Plate 3 is a concave
superquadric of the form:

|x|0.75 + |y|0.75 + |z|0.75 = 1 (12)

This illustrates a surface with singular gradients at
some points. Concave super quadrics are difficult
objects to render by direct intersection alone. With
ev en smaller exponents, the "webbing" between the
corners becomes so thin that even double precision
arithmetic may not be sufficient to isolate the roots
correctly or to compute the gradient accurately (in
such close proximity to a singularity). It would be
interesting to see if a careful application of round-out
interval arithmetic could handle such pathological
cases.

Plate 4 is the same surface as in Plate 3, with a twist
deformation [Barr84]:

x ′ = x cos(4y) − z sin(4y) (13)

z′ = x sin(4y) + z cos(4y)

In all of these figures, intersection with a simple
bounding box provides a starting interval for the root-
isolation algorithm. Better starting intervals might be
obtained by the octree spatial subdivision described
by Kalra and Barr [Kalra89] which could be easily
modified to use interval analysis.

Test images were generated with an experimental ray-
tracing system running on a SPARCstation 330.
Using this algorithm, a simple unit sphere was ren-
dered with 2.7 msec/ray. That compares to 0.78
msec/ray to render a sphere using the usual methods
of solving quadratic equations.

For more complex surfaces, the speed of the algorithm
varies from function to function. For some expres-
sions, the interval bounds converge more slowly as the
intervals are subdivided. Thus a relatively simple
algebraic surface may require more time than some
non-algebraic surfaces. The convergence of the inter-
val bounds is effected not only by the function, but
also the particular form of the expression. In particu-
lar, it is useful to keep in mind the subdistributive
property of interval arithmetic:

X(Y + Z) ⊂ XY + XZ (14)

A CSG ray tracer may need to compute all intersec-
tions of the ray with the surface in order to perform
set operations [Roth82]. In the case of boundary-rep-
resentation schemes or CSG models using just union
set operations, only the closest intersection is needed
to find the visible surface. Some representative times
are given below for finding all roots or just the root
closest to the ray origin:

Rendering Time in Milliseconds per Ray

Object Find All Closest

Sphere 2.7 1.9

Quartic (Plate 1) 33.2 17.9

Gaussians (Plate 2) 23.1 11.0

Superquadric (Plate 3) 6.4 4.4

Twisted SQ (Plate 4) 21.3 13.6

6. Conclusions

Few methods are available for reliably ray tracing
non-algebraic implicit surfaces. Root isolation by
interval analysis is a simple and general way to find
real roots of nonlinear equations. This method has
been used to ray trace an interesting variety of alge-
braic and non-algebraic implicit surfaces. It is effec-
tive even for surfaces which have singularities in their
gradients.

One advantage of the interval algorithm is that it does
not require a mathematical analysis of new surfaces to
determine Lipschitz constants—in fact the symbolic
expression for a new surface is entered at run time in
my implementation.

Several improvements should be made. Preprocessing
an object to find a tight-fitting octree boundary (as in
[Kalra89]) might improve performance. And in gen-
eral, the times shown above come from code which is
has not been squeezed for performance. Most time is
spent in the interval multiply routine which, unneces-
sarily, performs four multiplications for every call.

7. Acknowledgements

I would like to thank Eric Grosse for urging me to
give Moore’s algorithm a try. Thanks to John Ama-
natides who worked with me on the "FX" ray tracing
system used to test this algorithm.

8. References

[Barr81] Barr, Alan H., "Superquadrics and Angle-
Preserving Transformations", IEEE Com-
puter Graphics and Applications, January,
1981.

[Barr84] Barr, Alan H., "Global and Local Deforma-
tions of Solid Primitives", SIGGRAPH 84,
July, 1984.

[Blinn82] Blinn, James F., "A Generalization of Alge-
braic Surface Drawing", ACM Transactions
on Graphics, July, 1982, pp 235-256.

[Collins82] Collins, G. E., R. Loos, "Real Zeros of
Polynomials", Computing Suppl. Vol. 4, pp
83-94, 1982.

[Duff88] Duff, Tom, "Using Sturm Sequences for
Rendering Algebraic Surfaces", unpub-
lished report July 25, 1988.

[Hanrahan83] Hanrahan, Pat, "Ray Tracing Algebraic Sur-
faces", SIGGRAPH 83, July 1983, pp

83-89.

[Jones78] Jones, Bush, et al, "Root Isolation Using
Function Values", BIT Vol. 18, 1978, pp.
311-319.

[Kalra89] Kalra, Devendra, Alan H. Barr, "Guaranteed
Ray Intersection with Implicit Surfaces",
SIGGRAPH 89, July, 1989, pp 297-306.

[Kearfott87] Kearfott, R. B., "Abstract generalized bisec-
tion and a cost bound", Math. Comput., Vol.
49, No. 179, July, 1987, pp. 187-202.

[Madsen73] Madsen, K., "A root-finding algorithm
based on Newton’s method", BIT Vol. 13,
pp 71-75, 1973.

[Moore66] Moore, Ramon E., Interval Analysis, Pren-
tice-Hall, Englewood Cliffs, NJ (1966).

[Press88] Press, William H., et al, Numerical Recipes
in C, Cambridge University Press, (1988).

[Toth85] Toth, Daniel L., "On Ray Tracing Paramet-
ric Surfaces", SIGGRAPH 85, July 1985, pp
171-179.

[Wijk84] van Wijk, Jarke J., "Ray tracing objects
defined by sweeping a sphere", Eurograph-
ics 84, September 1984, pp 73-82.

