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1. Aliasing

Ray tracing is one of the most general and powerful techniques for synthesizing realistic images. Unfortu-
nately, this method suffers from a notoriously difficult problem with aliasing. This survey will consider
why the problem is hard, several classes of solutions, and some of the issues that require further study.
Before discussing ray tracing in particular, some general concepts of images and signals will be reviewed.

An image is an example of a two-dimensional signal, and can be in one of several different representations.
For example, in a television camera, a lens system focuses an optical image onto a target. That image is a
two-dimensional region of varying light intensity and color. When the target is scanned, an electrical signal
is produced which is "analogous" to the optical image. In this paper, both the optical and the electrical rep-
resentations will be called analog images, because they both consist of continuously variable physical
quantities.

A second possible representation is that of a symbolic image. For example, a "zone plate" pattern can be
expresses as a two-dimensional function, I (x, y) = sin(x2 + y2). Symbolic images may be continuously
variable, but they consist of mathematical expressions or computer programs rather than tangible physical
quantities.

A digital image is a two-dimensional lattice of uniformly spaced samples of color, called pixels. Unlike the
analog image, a digital image consists of discrete numerical quantities giving the value of an image at a
finite number of sample points. These numerical quantities also have finite precision (typically eight-bit
integers for each color channel), and this introduces quantization effects. Eight bits seems to be adequate,
but for display systems with only one or two bits of precision (e.g., bitmap terminals and printers), quanti-
zation is a dominating effect.

Many image computations involve transformations from one of these representations to another. In a typi-
cal computer-graphics scenario, a user specifies an image symbolically, a renderer (e.g., a ray tracer) con-
verts that symbolic representation to a digital image, and a display system (e.g., frame buffer and CRT)
converts the digital representation to an analog image. An image-processing scenario might consist of first
converting an analog image to digital, performing a computation on the digital image, and then converting
back to an analog image in a display.

Visible defects in images can be introduced if there are errors in changing representation. Of particular
interest are errors introduced when an image is digitized (or redigitized) by sampling. Conditions under
which a signal can be sampled without loss or distortion of information are described by Shannon’s Sam-
pling Theorem [Shannon49]. It states that a signal whose spectrum contains no energy above some fre-
quency W can be recovered without loss from samples taken at a rate of 2W or more.

For a two-dimensional image, the sampling theorem can be generalized to apply when the image spectrum
contains no energy outside of some bounded area in frequency space [Petersen62]. Digitizing the image
requires sampling it periodically, and the spectrum of a sampled image consists of periodically spaced
replicas of the spectrum of the original image (see: Figure 1). The replicas are sometimes called "side-
bands", and the original spectrum at the center is called the "baseband".
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Figure 1. Spectrum of Sampled Image

If the samples are more closely spaced, the replicas of the spectrum will be wider apart. If the samples are
not spaced closely enough, the spectral replicas will crowd closely together and overlap. In that case, the
conditions of the two-dimensional sampling theorem are violated, and the resulting unrecoverable distor-
tion of the image is called aliasing.

Converting a digital image back into a continuous image (either analog or symbolic) is called reconstruc-
tion, which can be accomplished by a low-pass postfilter. The dotted box in Figure 1 indicates a region of
the spectrum which a reconstruction filter should pass, while blocking out the replicas. In the spatial
domain, reconstruction can be thought of as a smooth interpolation of the samples. Some problems can
occur if the reconstruction filter allows some of the replicas to leak thru. This is called "postaliasing" or
"imaging". An example of postaliasing would be visible scan lines in an overfocused CRT.

The sampling theorem suggests two ways to prevent aliasing: the image can be sampled densely enough to
prevent spectral overlap, or the image can be prefiltered to clip the spectrum within a smaller bounding
area. Most often, prefiltering is the preferred solution, with the sampling rate fixed by the display or limita-
tions in transmission. How this is accomplished depends very much on the representation of the source
image; analog, digital, or symbolic.

Aliasing of images was first encountered when people began to scan and digitize analog images for televi-
sion and facsimile transmission [Mertz34]. In this case, the antialiasing problem has been essentially
solved. Analog images can be prefiltered by physical manipulations of the signal. For example, high fre-
quencies can be removed by defocusing lenses, by the finite beam aperture in a vidicon camera, by the inte-
gration of light over the finite area of a CCD senser, or by analog electronic filtering after the photo-
detection stage of a camera.

A second type of antialiasing problem occurs when a digital image must be resampled at a different rate. In
this case, proper prefiltering is accomplished by designing digital filters in which output pixels are weighted
sums of input pixels. This is a fairly mature science now [Crochiere75]. Filter design for images also
involves a variety of subjective image-quality considerations in addition to antialiasing considerations
[Schreiber85, Mitchell88].

Finally, there is the case of converting a symbolic image to digital form. Graphical rendering programs,
such as ray tracers, face this problem, which appears to be more difficult and wide-ranging than analog or
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digital antialiasing [Crow77].
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Figure 2. Basic Ray Tracing

Figure 2 illustrates a simple view of the ray-tracing procedure. A point (x, y) can be selected on the image
plane, a ray cast from the viewpoint thru that point, intersection and shading calculations follow, and some
color value results. For purposes of this discussion, it is useful to define the composition of these processes
as the symbolic image function I (x, y). The image function can be evaluated at continuously variable
points (x, y) and returns a color value and perhaps some additional information from the object space. The
end product of a ray tracer is a digital image, which must be produced from the symbolic image function—
without aliasing.

2. Symbolic Prefiltering Methods

In the cases of analog and digital antialiasing, prefiltering is the standard solution; however, symbolic pre-
filtering is a difficult course of action. Catmull’s antialiased scan-conversion algorithm is a good example
[Catmull78], but for ray tracing, most practical antialiasing algorithms are based on resampling. Some
approaches to antialiased ray tracing can be categorized as attempts to prefilter in the symbolic domain.
These methods are interesting, and (even if not entirely successful) they help us to understand and appreci-
ate the difficulty of the problem.

The desired low-pass prefilter kernel will be denoted by k(x, y) and the sampling process will be repre-
sented by modulation with Dirac δ -functions δ (x, y). Then sampling a prefiltered image function can be
expressed as a convolution of the filter with the image function, followed by multiplication by the δ -func-
tion. It is useful to notice that these operations can be combined in two possible orders:

pixelxy = ∫ δ (x, y) ⋅ (k * I ) (1)

= ∫ (δ (x, y) * k) ⋅ I

Put in the most intuitive terms, this suggests dual approaches to prefiltered ray tracing, in which either the
objects are filtered or the rays are filtered.

2.1. Cone Tracing

Cone tracing is an example of the ray-filtering approach [Amanatides84]. As indicated in Figure 3, the
object space is probed with a finite-width cone instead of a ray. The intent is to prefilter by computing the
integral of the image function within a circle on the image plane.
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Figure 3. Cone Tracing

Exact symbolic integration of the image function would be practically impossible, but cone tracing pro-
grams approximate this result. If the cone comes in contact with an object, the projected silhouette area
within the image circle is computed as shown in Figure 4. A limitation of the cone tracing algorithm is that
this calculation is not easily performed except for simple objects such as spheres and polygons.

Image Circle

Foreground Object

Figure 4. Projected Silhouette In Cone Intersection

Some practical approximations are made in evaluating an antialiased pixel value from a cone sample. First,
the cone is not subdivided in cases like the one in Figure 4—a clipped cone is not cast into the background.
Instead, the background scene is sampled with the whole cone, and then the silhouette area of the fore-
ground object is used to proportionally blend the background color with the foreground color.

Evaluating the color of a foreground object involves some additional approximations. Exact integration of
the shading model over the visible portion of the object surface is also impractical. If the object is texture
mapped, the texture can be prefiltered using information about the silhouette area. If the object is reflective,
a secondary cone can be cast from some representative point on the object, using a cone angle computed
form the local surface curvature and shininess. In other cases, the color of the foreground object may be
determined by shading a representative point on the surface.

Cone tracing has produced some striking images, such as Plate 1. It is one of the most efficient methods yet
demonstrated for producing the diffused-reflection effect (seen in the smaller sphere in Plate 1) and soft
shadows. Kirk has extended the method to handle bump mapped surfaces [Kirk87]. Cone tracing is still
limited by the difficulty of cone intersections, and the possible artifacts caused by the various integration
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approximations have not been fully studied.

2.2. Beam Tracing

Heckbert and Hanrahan invented a rendering algorithm called beam tracing, which is a hybrid of polygon
scan conversion and ray tracing [Heckbert84]. If a scene is made up of polyhedral objects, one can use an
object-space visible surface algorithm to divide the screen into non-overlaping visible polygonal regions
[Weiler77]. Some of these scan-conversion algorithms perform antialiasing by symbolic prefiltering [Cat-
mull78, Duff89].

Heckbert and Hanrahan show that if some of the polyhedral objects are reflective, it is possible to render
recursively. When a reflective visible polygon is encountered, the scene is transformed and rendered from
the virtual viewpoint and clipped to the polygon. A variant of this approach is described by Garcia [Gar-
cia86].

Combining the beam-tracing technique with Duff’s exact polygon convolution algorithm may give the most
sophisticated rendering algorithm in which antialiasing can be performed by exact symbolic prefiltering.

2.3. Ray Tracing with Covers

Another approach to symbolic prefiltering is to filter the objects instead of the ray. One way of doing this is
by adding covers to objects. Whitted first suggested the idea of putting invisible covers around small
objects to make sure they were not missed by course sampling [Whitted80]. This idea is extended by
Thomas, Netravali and Fox to handle other forms of aliasing [Thomas89]. In their scheme, (portrayed in
Figure 5) a covered object has invisible inner and outer shells, which are not rendered but provide informa-
tion to the ray-intersection routine which can be used for antialiasing.
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Figure 5. Ray Tracing with Covers

The inner and outer covers are used to detect situations where special computation is needed to antialias
edges. Three situations are considered: the silhouette of an object, the curve of intersection between over-
lapping objects, and the edges of shadows.

Antialiasing silhouette edges is the simplest case. If a ray passes thru the outer cover without passing thru
the inner cover, then the antialiasing calculation is done; otherwise a standard unfiltered ray-casting calcula-
tion is done. The covers are adjusted so that this detection zone, when projected onto the image plane, is
about twice the width of the pixel spacing.

Once edge proximity is detected, the antialiasing calculation starts by finding the minimum distance
between the image point and the projected silhouette edge. Based on that distance, filtering is done by lin-
ear interpolation between the background color and the color of the intersected object.
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Figure 6. Intersection Between Overlapping Covered Objects

The second case is the antialiasing of the intersection curve when two objects overlap. Figure 6 shows how
edge proximity can be detected when a ray passes thru the outer cover of both objects before passing thru
the inner cover of either. Filtering is again a linear blend between the colors of the two objects, depending
on the distance between the image point and the projected curve. The intersection curve is approximated
by local tangent planes. The third case deals with shadow edges, and it is too complex to describe in detail
here. It is somewhat problematic and involves the covers of the intersected object as well as the covers of
the object casting the shadow.

Like cone tracing, ray tracing with covers requires only one sample per pixel to generate an antialiased dig-
ital image. Therefore, it is quite fast, but so far (as with cone tracing) it has been limited to models made
up of very simple primitives. Unlike cone tracing, it does not seem feasible to simulate effects of diffuse
reflection and area light sources easily.

2.4. Level of Detail

Another way to symbolically filter out unwanted high frequencies is to limit the level of detail at the model-
ing level. This might mean having a hierarchy of geometrical models for a given object, with simpler ver-
sion of the object used when viewed at a distance [Clark76]. This technique has been used to increase the
speed of real-time systems, but not (to my knowledge) in antialiasing ray tracers.

A more common use of variable level of detail is in procedural models of texture. Procedural texture is
often defined as a series of increasingly higher frequency components [Perlin85]. For example, 1/ f noise
can be approximated as a series, using a function B(X) which has a noisy spectrum limited to a narrow
band of frequencies:

F(X) =
∞

i
Σ B(2i X)

2i
(2)

This series can be truncated when the level of detail approaches subpixel frequencies. Even more exact
prefiltering can be done if the procedural texture is an explicit Fourier series [Norton82]. Norton’s tech-
nique, called clamping, took careful account of the perspective projection onto the image screen.

Specular highlights are often modeled by a cosn(α ) function [Phong75], and these highlights can be a trou-
blesome source of aliasing. Higher powers n result in a sharper highlight, but n can be lowered to affect
antialiasing [Amanatides89].
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3. Antialiasing by Resampling

Symbolic-prefiltering approaches to antialiased ray tracing have tended to be quite specialized and limited.
In the current state of the art, the image function I (x, y) of a ray tracer can be highly complex. Antialiasing
must deal with many different mechanisms that contribute to unwanted high frequencies: object silhouettes,
shadow edges, specular highlights, procedural texture, mapped digital texture, reflected and refracted
details in an image, thin objects, etc. To be completely successful, symbolic methods must deal with all of
these mechanisms, often requiring a special strategy for each one.

If the image function cannot be prefiltered, then the logical alternative is to increase the sampling rate.
Recall from Figure 1, that the spectrum of a sample image consists of an array of replicas. When the sam-
ples are denser, the replicas are spaced farther apart. Even if the spectra continue to overlap, the amount of
overlap will be reduced then. This is the case in ray tracing, where the image function has infinitely high
frequencies, but the degree of aliasing can be reduced to arbitrarily low lev els by higher sampling rates.

There are three important issues connected with boosting the sampling rate. First, since each sample
requires a ray-casting calculation, increasing the sampling density will proportionally increase the computa-
tional expense. Secondly, there is the question of how to choose an appropriate sampling density. Finally,
a digital reconstruction filter must be designed to convert the samples from the ray-casting rate down to the
pixel rate. This approach to antialiasing is very general. In effect, it approximates the symbolic filtering
problem with a digital filtering problem.

3.1. Adaptive Sampling

Clearly, there is a tradeoff between computational expense and sampling density. The simplest form of this
antialiasing strategy would be to supersample the entire image at a high uniform rate. Choosing a sufficient
supersampling rate is a matter of estimating or predicting properties of the image’s frequency spectrum. By
the sampling theorem, if W is the practical upper limit of frequencies in some dimension (i.e. the band-
width), then a sampling rate of 2W is required to avoid aliasing.

Supersampling the entire image function seems wasteful since experience shows that aliasing usually
occurs only in certain regions of an image (e.g, edges). This suggests that it would be much more efficient
to make the sampling rate adaptive. Adaptive sampling is probably the best response to the issue of com-
putational expense, but it increases the complexity of the issues of choosing a sampling rate and of recon-
structing pixel values. This is because the sampling is no longer happening at a constant uniform rate.

The sampling rate is now based on some estimate of local bandwidth. Intuitively, if the image has a band-
width of W in some dimension over a region of length X , then we expect that 2WX samples will be needed.
This is an abuse of the sampling theorem, but it is a reasonable engineering rule of thumb which can be
supported by careful theoretical analysis [Landau62].

A deep theoretical discussion of local bandwidth is not really necessary to understand adaptive sampling,
but a brief digression into the interesting subject of localized frequency analysis won’t do any harm. One
common way to define the frequency spectrum of a signal in the neighborhood of a point is the sliding-
windowed Fourier transform. For example in one dimension, a signal g(x) is first multipled by a window
function w(x) which is zero everywhere except a small region centered at zero. The window might be
tapered so that g(x)w(x) goes to zero gradually at the edges. Then the strength of the signal around x0 at
frequency f0 is found by sliding the window to that position and doing a Fourier transform:

G(x0, f0) =
∞

−∞
∫ g(x)w(x − x0)e−2π if0 x dx (3)

This type of localized frequency analysis is implied when we discuss the bandwidth of an image in the
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neighborhood of a pixel. Typically the window is simply a square region one pixel wide.

Another view of localized frequency analysis is given by filter banks. The signal is separated into a set of
signals, each containing an exclusive range or "band" of frequencies. Then we can refer to the strength of
the signal at location x0 in a band [ fi , fi + 1]. This view is useful when discussion antialiased texture maps,
where the texture images may be represented by a set of digital pictures at different resolutions.

It is not likely that such sophisticated views of local bandwidth will ever be needed to perform adaptive
sampling in ray tracing, but it is important to understand that saying "local" and "bandwidth" in the same
context implies something beyond standard Fourier analysis. The use of advanced estimation methods for
local bandwidth is still a problem requiring more study.

The classic algorithm for adaptive sampling is described in the foundational paper on ray tracing by Whit-
ted [Whitted80]. It provides a practical example of how to estimate local bandwidth and how to reconstruct
the pixel values from the adaptively placed ray-casting samples. This algorithm estimates the integral of
the image function over a square pixel-size region. Note that "area averaging" is mathematically equivalent
to prefiltering with a box filter and then sampling.

Figure 7. Subdivided Pixel Area in Whitted’s Algorithm

Whitted’s algorithm estimates the area integral by adaptive subdivision. Figure 7 illustrates a possible sce-
nario, where an irregular object impinges on the upper right corner of the pixel area. We begin with ray-
casting samples made at the pixel rate and located at the corners of the square pixel area. If there is no sig-
nificant differences between the four corner samples, then the pixel value will be the average of the four
corners. If there is a significant difference, then the square is subdivided into four subsquares, and the algo-
rithm proceeds recursively to some limiting subdivision level. The contribution that each subsquare makes
to the pixel value is the average of its four corner samples weighted by its proportional area.

Testing the differences between samples is a discrete estimate of the magnitude of the local gradient of the
image function. This gives a rough measure of local bandwidth because the first derivative value of a signal
g(x) has the frequency-weighted spectrum −iω G(ω ). Energy at high frequencies therefore makes a larger
contribution to the gradient magnitude.

One difficulty with this approach is that very small objects can slip between the initial pixel-rate samples.
In an animation, a small object like that might pop in and out of the scene, an effect called scintillation.
Whitted proposed that sufficiently large invisible covers surround small objects so that the adaptive sam-
pling procedure can be alerted to their presense (i.e., when a ray strikes a cover).
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What is meant by "significant difference" when comparing adjacent samples? In practice, a threshold is
chosen by trial and error. More sophisticated measurement of significance could be based on visual psy-
chophysics, how the eye is expected to respond to the difference. Two properties of the visual system are
particularly relevant. First, the eye’s response to local differences in luminance (∆L) is nonlinear and
seems to be approximately proportional to ∆L/L rather than just the difference ∆L. In other words, a given
difference in samples will be more noticeable in a dark region of an image than if it were in a bright region.
This suggests one should test for a significant ratio rather than a significant difference.

A second interesting property of the eye is that sensitivity to high-frequency spatial noise (e.g., aliasing) is
color dependent. Because green-sensitive receptors are much more densely populated in the retina, spatial
variations in green intensity are more significant. The poorest sensitivity is to blue. Notice that we are talk-
ing about sensitivity to contrast and high-frequency spatial noise, not about perception of errors in hue.
Thus, it would be incorrect to measure significance of difference as a "color distance", using CIE colorimet-
ric coordinate systems.

The reconstruction scheme in Whitted’s algorithm is interesting and intuitively pleasing. However, there
are some minor problems. It is important to keep in mind that the end result of this reconstruction is the
production of a pixel value as a weighted average of the ray-casting samples. Figure 8 shows the actual
weights (in parts per 256) of the samples from the example in Figure 7:
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Figure 8. Sample Weights from Whitted’s Algorithm

There are some peculiarities in these sample weights. Some samples contribute little, while nearby neigh-
bors are weighted heavily. If area average is the goal (and area average is not the best prefilter), then a
more satisfying scheme might be to weight each sample by the area of its surrounding Voronoi cell. The
Voronoi cell of a sample is the area which is closer to that sample than to any other:
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Figure 9 Voronoi Cells of Adaptive-Sample Locations

Unfortunately, computing the Voronoi diagram is quite expensive. This would not be a practical solution,
but as shown in Figure 9, it gives some qualitative indication of how we would like to weight the ray-
casting samples. An approximation of Figure 9 with rectangular cells is probably quite easy to compute.

4. Nonuniform Sampling

The familiar aliasing artifacts of "jaggies" and Moiré patterns are particularly conspicuous to the human
eye, because they are often extensive and orderly in structure. This results from the interaction of the image
with the regular uniform spacing of the samples. For example, a Moiré pattern is the result of a periodic
structure in the image beating with the periodic sampling pattern. Could this effect be eliminated by break-
ing up the regularity of the sampling pattern? At Bell Labs, we experimented briefly with this idea, ran-
domizing the sampling positions. The resulting images were extremely noisy, and the approach was aban-
doned.

Our experiments with randomized sampling failed because we were missing the crucial theory of how
nonuniform sampling designs affect subjective image quality. The standard view of aliasing breaks down
when sampling is not uniform, and there is no simple notion of what the best nonuniform sampling pattern
should be. An interesting solution to this problem was revealed by studying the pattern of photoreceptors
in the retina [Yellott83], and this led to the successful application of nonuniform sampling to ray tracing by
researchers at Lucasfilm and elsewhere [Cook84, Dippé85, Cook86, Mitchell87].

4.1. Stochastic Point Processes

Understanding Yellott’s discovery and its impact on the antialiasing problem requires some knowledge
about properties of nonuniform patterns and a few more facts about visual psychophysics. The nonuniform
sampling patterns of greatest interest are examples of stochastic point processes. Figure 10 shows samples
of three important point processes:
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Figure 10. Examples of Stochastic Point Processes

The Poisson process is one of the simplest, where the probability of finding a point is uniformly random
and independent of the location of any other point. Another important process is uniform jitter, where the
points of a uniform lattice are perturbed by a uniformly distributed random amount. Notice that the points
in a jitter process are not quite as "clumpy" as the points in a Poisson process; the variance of sample den-
sity is less.

The third process shown above is the Poisson-disk process, in which a minimum distance constraint is
added to the Poisson process. The points are centers of randomly-placed nonoverlapping disks. There are
actually several different point processes which are called Poisson-disk [Ripley77], but the one illustrated
above is a dart-throwing process. A candidate point is generated at random and added to the pattern only if
it is not too close to any other points already in the pattern. This proceeds until there is no place left to fit a
new point.

Stochastic point processes can be characterized by statistics such as the mean density of points per unit area
λ . An important second-order statistic is the autocorrelation function. Given a point at (x, y), the autocor-
relation indicates the average likelihood of finding another point at (x + u, y + v):

A(u, v) = E /
\

∞

−∞
∫

∞

−∞
∫ s(x, y) s(x + u, y + v)dxdy \

/ (4)

Here s(x, y) is the sampling function, a sum of δ -functions located at each sample point. The expectation
value is an average over the ensemble of all possible instances of the stochastic point process. It is assumed
that the point process is well-behaved in the sense that λ and A(u, v) are not dependent on position (x, y).
The process is then said to be wide-sense stationary.

Figure 1 illustrated the effect of uniform sampling on the spectrum of an image—periodic replicas of the
original unsampled spectrum. It is particularly easy to view aliasing as the foldover of these replicas. By a
similar analysis, we would like to know the spectral consequences of nonuniform sampling, and the first
step is to look at the spectrum of the sampling function s(x, y).

Some bending of the rules was required to state that the Fourier transform of a uniform lattice of δ -func-
tions is also a uniform lattice of δ -functions. In the nonuniform case, this is not possible, and the Fourier
transform of s(x, y) is infinite or undefined. However, for stationary point processes, it is possible to define
the spectral density, which is the energy per frequency per unit area. This happens to be the Fourier trans-
form of the autocorrelation function.

The spectral density can be estimated by forming a collection of point patterns (random instances of the
point process), windowing them to avoid edge effects, and averaging their Fourier transforms. The
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following two figures show examples of these spectra, the radial average of the power spectra of the Pois-
son process and a Poisson-disk process:
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Figure 11. Radial Spectral Density of Poisson Process
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Figure 12. Radial Spectral Density of Poisson-disk Process

Unlike the regular lattice structure of the uniform-sampling spectrum, stochastic sampling structures like
these consist of a single δ -function at the origin and some pattern of noise elsewhere. When sampled, the
spectrum of an image is convolved with this, resulting in a copy of the image spectrum (from convolution
with the δ -function) and some noise (from convolution with the noisy part of the sampling spectrum). This
is illustrated in Figure 14. While uniform sampling can result in spectral overlap and periodic structured
aliasing, nonuniform sampling can result in noisy unstructured aliasing.

In the case of the Poisson process, the noisy part of the spectrum is broadband white noise. However, the
noisy part of the Poisson-disk spectrum is concentrated at high frequencies. We could call this type of
spectrum blue noise.

Yellott noticed that the photoreceptors in the retina of rhesus monkeys are arranged in a Poisson-disk
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pattern [Yellott83]. The spectral consequences of this type of sampling are that the noisy aliasing will be
higher in frequency than if simple Poisson sampling was used. This is good because the eye is less sensi-
tive to the high-frequency noise, and general lack of order in the aliasing (as opposed to a Moiré pattern)
makes it less conspicuous.

The jitter process can also be used for nonuniform sampling. Its spectrum contains more low-frequency
noise than the Poisson-disk, but it is much easier to generate this type of sampling pattern. Important exist-
ing systems use jitter sampling [Cook84, Dippé85, Cook86]. The Poisson-disk pattern can be precomputed
and stored by simulating the dart-throwing process on a small patch (with periodic boundaries), and then
replicating to cover the image plane. A good approximation to the Poisson-disk pattern can be generated
on the fly by a point-diffusion algorithm similar to the Floyd-Steinberg dithering technique [Mitchell87].

4.2. Adaptive Nonuniform Sampling

Nonuniform sampling does not eliminate aliasing. Rather, it changes the nature of the aliasing noise to
make it less conspicuous. Edges and other high-frequency components in the image function may still
require relatively higher sampling density to get a true reduction of aliasing noise. This leads to a desire to
make nonuniform sampling adaptive. As in the uniform-sampling case, there are the problems of choosing
a local sampling rate and reconstructing pixel values, but nonuniformity exacerbates these problems. In
addition, nonuniformity makes it slightly more difficult to generate variable-rate sampling patterns.

Straightforward adaptive-sampling schemes like Whitted’s do not have a simple analog in the case of
nonuniform sampling. Nonuniform subdivision would require more complex data structures, and it would
be difficult to maintain the optimal blue-noise spectrum at the same time. An impractical subdivision algo-
rithm would be to approximately double the sample density by forming the Voronoi diagram of a region of
points and then adding a new sample at each vertex.

Dipp ́e and Wold suggest creating a variable-density sampling pattern by a Poisson-disk process with a vari-
able minimum-distance constraint [Dippé85]. The dart-throwing algorithm could then pack points more
closely together in regions where the image has higher frequencies. The problem with this approach is that
the sampling pattern cannot be precomputed and stored, and dart-throwing is too expensive to do on the fly.
The point-diffusion method could be easily modified to produce variable density, altho as the density
becomes higher, the process no longer yields a good blue-noise spectrum.

A simpler approach is to quantize the sampling density into a discrete number of levels—possibly just two
levels. This is the approach taken by Cook and Mitchell [Cook86, Mitchell87]. In Cook’s application, 16
samples per pixel were taken (using a jitter process), and where necessary, some pixels were sampled 64
times. These are rather high sampling rates, necessary for the "distributed ray tracing" algorithm.

The "antialiasing module" used by Mitchell was based on a stored periodic Poisson-disk pattern of 1024
points which was scaled to provide two densities of sampling. The entire image was sampled at about the
pixel rate (an average of 1.2 samples per pixel), and where needed, additional samples were made at the
rate of 9 samples per pixel. At these fairly low sampling rates, the Poisson-disk pattern was noticeably
superior to jitter sampling.

Dipp ́e and Wold have suggested an adaptive jitter-sampling process. Sample density can be progressively
increased, as illustrated in Figure 13, by selecting a rectangular cell containing one point, bisecting in one
dimension, and generating a new random point in the empty half. Which dimension is bisected could be
chosen randomly, it could alternate with the level of subdivision like a K-D tree, or it could be based on
local estimation of gradient direction [Kajiya86].
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Figure 13. Adaptive Jitter Pattern

Sampling density is adapted to local bandwidth in the image. As in Whitted’s adaptive-sampling scheme,
local bandwidth is usually estimated by looking at the differences in the values of adjacent samples, but
other cues may also be used (e.g., covers around small objects). For example, in Mitchell’s system, the
variation of sample values in a region determines whether additional high-density sampling is performed.
More specifically, conditional high-density sampling is done in square blocks two pixels wide, and the deci-
sion to supersample is based on inspecting the low-density samples in a surrounding square four samples
wide. Some visual psychophysics is considered in assigning significance to the sample variation
[Mitchell87].

It should be noted that predicting the presense of local high frequency based on some initial low-density
samples is not always possible in the most rigorous sense. The observation of a large difference between
adjacent samples could be caused by a variation of the image that is below the Nyquist frequency. When
we choose to supersample that region, we are implicitly accepting the alternative hypothesis that the sample
values are actually an alias of a much higher frequency. This hypothesis is justified by the structure of typi-
cal images. A sharp edge is much more likely than a half-cycle-per-pixel texture. Furthermore, it is not a
serious error to supersample in a few places where it was not really needed.

Once local supersampling has taken place, the alias hypothesis can be verified a posteriori. The high-
density supersamples give better information about higher frequencies in the image. One could take advan-
tage of coherence in the local bandwidth by continuing to supersample until reaching a region where the
high-density samples lead to a confident rejection of the alias hypothesis. One might call this "hysteresis
adaptive sampling" because it makes supersampling easier to turn on than to turn off. Some recent work on
edge-following adaptive sampling could be considered an example of this concept [Thomas88].

4.3. Nonuniform Reconstruction

Deciding where to make ray-casting samples and how densely to sample is only half the problem. These
samples must then be used to calculate pixel values, and their nonuniformity makes the problem especially
difficult. This calculation can be viewed as consisting of two steps: reconstructing a continuous image from
the samples, and then resampling this continuous image to get the pixel values. In practice, the continuous
representation will probably not be explicitly constructed, or perhaps an approximation to it may be con-
structed.

The adaptive jitter sampling, shown in Figure 13, has an obvious reconstruction algorithm associated with
it—to weight each sample in proportion to the area of the cell it is contained in. This is an approximation
of the Voronoi-area-weighting scheme illustrated in Figure 9. The situation is somewhat simpler than with
Whitted’s subdivision algorithm, because the samples are distributed about the center of the cells instead of
being located at the corners. Of course, area averaging (i.e., box filtering) is implied by this reconstruction
scheme.

In the general case, we may be faced with an arbitrary arrangement of samples and with no algorithm for
computing the pixel values that is obvious a priori. In the case of uniform sampling, reconstruction is
accomplished by low-pass filtering, as indicated by the dotted box in Figure 1. However, the consequences
of nonuniform sampling create a more complex situation as show in Figure 14:
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Figure 14. Spectrum of Nonuniformly Sampled Image

The scattered dots in this figure are meant to represent noise, which now replaces the neatly isolated spec-
tral replicas of Figure 1. The low-pass filter, represented by the dotted box, passes some of this noise and
can cause the reconstructed image to look grainy. This is an example of postaliasing, which is now a more
perverse problem than it was with uniform sampling. When sampling is adaptive, the nonuniformity can be
extreme and the sampling pattern can no longer be thought of as stationary. Low-pass filtering is com-
pletely unacceptable as a reconstruction method in that case.

For nonuniform sampling, a common alternative to low-pass filtering is normalized weighted-average inter-
polation [Dipp ́e85, Cook86]. In one dimension, suppose we have a collection of samples g(xn) and a filter
kernel k(x). Then the value of g at any point x can be interpolated by:

g(x) =

∞

n = −∞
Σ k(x − xn) g(xn)

∞

n = −∞
Σ k(x − xn)

(5)

One of the results of this is perfect reconstruction of a constant signal g(x) = C. In that case, the expression
above will be equal to C ev erywhere, and it seems that this method produces good results when g is fairly
low in frequency and when the sample positions are not too unevenly distributed. However, adaptive sam-
pling can violate those conditions and cause this method to perform poorly.
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Figure 15. Problem Situation for Normalized Weighted Average

Figure 15 illustrates an example (in one dimension) of this problem. The signal being sampled has a sud-
den step at S, and its neighborhood has been adaptively sampled at higher density. Suppose we wish to
reconstruct this function with a box filter, by estimating the average of the signal in the interval [A, B]. We
would want a fairly small contribution to this interval from the low part of the signal to the left of the step
(about 25%). But 3 of the 7 samples in this interval are to the left of the step. Normalized weighted aver-
age will give the low part of the function to the left of the step about 43% weight. Intuitively, we want the
right-most sample in this interval to have more weight because it "represents" most of the right half of
[A, B].

Of course, it is easy to interpolate the samples in Figure 15 by connecting samples with piecewise linear
sections. In general, any filter can be made to exactly interpolate these samples by first warping the kernel
to match the uneven placement of the samples [Clark85]. Unfortunately, this does not solve the problem at
hand, because the resulting interpolation will not be properly bandlimited. Aliasing can result when the
reconstructed signal is resampled at the pixel rate. For example, linear interpolation between the samples in
Figure 15 would result in a function with almost as sharp a step as the original signal.

What we really want to derive from the adaptive samples is an accurate estimate of the prefiltered signal,
which we cannot compute directly in the ray tracer. This sort of reconstructed signal should look more like
the curve in Figure 16:

• • • •

• • •

• •

• •

Figure 16. Bandlimited Reconstruction from Adaptive Samples

One possibility is to perform this bandlimited reconstruction in two stages, by first constructing a simple
non-bandlimited interpolation (e.g., piecewise linear or piecewise constant), and then convolving that
reconstruction with a proper filter [Mitchell87].

Painter and Sloan applied this technique to samples made by adaptive jitter [Painter89]. As the example in
Figure 13 shows, adaptive jitter samples are each contained in a rectangular region, and in a piecewise-
constant reconstruction, each of these regions would have a constant value (i.e., the sample’s value). For
each subpixel rectangular region Ri with constant value Ci , we can convolve with a filter kernel k(x, y) by
integration:
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hi(x, y) = Ci

Ri

∫ ∫ k(x − x ′, y − y′)dx ′dy′ (6)

The pixel value at (x, y) would be the sum of hi(x, y) values for all regions within the support (i.e., width)
of k(x, y). As Painter and Sloan point out, this integral may be done in closed form if the kernel is a poly-
nomial, and for more general filters the integral values may be precomputed in a sum table [Crow84].
Naiman gives details of how to convolve rectangles with filters by table lookup [Naiman87].

Another possible approach to nonuniform reconstruction is to associate nonuniform samples with positions
on a uniform subpixel lattice. Then samples generated by arbitrary methods can be handled somewhat like
those of adaptive jitter. The multi-stage filter used in Mitchell’s system begins with a subpixel lattice and
then forms the final reconstruction by filtering and normalizing the image multiple times with filters of ever
widening support [Mitchell87].

5. The Statistical Sampling Approach

Cook’s remarkable paper on "distributed" ray tracing [Cook84] did not reveal the methods and theory of
nonuniform sampling. Before this information was published [Cook86], a number of other sites began
research in this area. Of these efforts, work done at the University of Tulsa was particularly interesting,
because they assumed (incorrectly, but fortuitously) that the Lucasfilm results were based on Monte Carlo
methods [Lee85].

Up to this point, sampling artifacts in graphics have been discussed solely in terms of the theory of signal
processing and aliasing. An alternative viewpoint is provided by the theory of statistical sampling and esti-
mation, and some work on antialiased ray tracing seems to emphasize this formalism [Lee85, Kajiya86,
Painter89]. For pedagogical reasons, I am separating the discussion of that work from nonuniform sam-
pling [Dippé85, Cook86, Mitchell87], but of course, they are interrelated. All of this work is often referred
to as "nonuniform sampling" or "stochastic sampling".

5.1. Sequential and Block Designs

Only a short digression will be required to review the relevant statistical theory. A number of texts on sam-
pling techniques and experimental design contain more details and many techniques which have not yet
been applied to this particular problem [Davies56, Cochran77]. This methodology assumes that the param-
eter being estimated has a normal distribution, which is not really true. These techniques are often assumed
to be robust when the parameter under study is at least unimodal, but even that is a doubtful assumption for
typical image functions. Nevertheless, the techniques have been applied and seem successful. Keep in
mind that the lack of a known bandlimit on the image function also causes the techniques based on signal-
processing theory to be uncertain.

Computing a pixel value by area average is, as the name implies, an attempt to compute the mean value µ
of the image function in the pixel area. To simplify the discussion of this problem, consider a one-
dimensional signal g(x) being studied (in some interval). Given a  set of n samples, the estimate of the
mean is simply:

g =
1

n

n

i = 1
Σ g(xi) (7)

The quality of this estimate is indicated by its variance:

σ 2
g =

σ 2

n
(8)
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Where σ 2 is the variance of g(x) in the interval under study. A confidence interval can be computed giving
a probability 1 − α that the estimate g lies between tail-end values ± zα /2 of the standard normal distribu-
tion:

g ± zα /2
σ

√ n
(9)

Unfortunately, we do not know the actual value of σ 2, but it can also be estimated from the samples by:

s2 =

n

i = 1
Σ (g(xi) − g)2

n − 1
(10)

Using s instead of σ , the confidence interval is:

g ± tα /2
s

√ n
(11)

Where tα /2 is a tail-end value of the Student’s t distribution with n − 1 degrees of freedom. One possible
strategy would be to randomly sample the pixel area and compute the confidence interval after each new
sample until it reaches an acceptable level. This is called a sequential experiment. An acceptable confi-
dence interval might be determined by the quantization of the display (e.g., ± 1/256 for typical 8-bit chan-
nels), or it could be based on considerations of visual psychophysics.

A second important statistical method is block sampling (also called stratified sampling). Instead of taking
samples randomly within the pixel area, it could be subdivided into smaller blocks. This is advantageous if
the image has a large variance within the pixel area, but is relatively homogeneous within each subpixel
block. A precise pixel value can be computed by averaging the estimates of the mean in each low-variance
block.

A B C

x

g(x)

σ AB

σ BC

σ AC

Figure 17. An Opportune Scenario for Block Sampling

Figure 17 shows a good example of where block sampling would be beneficial. The signal g(x) has two
distinct homogeneous regions of about equal size. The variance of the estimate of the mean will be much
smaller if estimates from the two blocks are combined. In general, if the region being sampled is divided
into L blocks with fractional areas Wi , and ni samples are made in each block, then the intra-block esti-
mates of the means and the variances of the means can be combined as:
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g =
L

i=1
Σ Wi gi (12a)

σ 2
g =

L

i=1
Σ W 2

i



s2
i

ni




(12b)

Lee et al used both the concepts of sequential sampling and block sampling in their system [Lee85]. The
pixel area was divided into 8 blocks, and the sampling was carried out until a satisfactory variance of the
mean was achieved (between 8 and 96 samples per pixel). Kajiya discusses other possible sampling strate-
gies, including the adaptive jitter method of Dippé and some techniques used in Monte Carlo integration
[Kajiya86].

5.2. Multiparameter Sampling and Distributed Ray Tracing

Nonuniform/stochastic sampling is a powerful technique for suppressing visible spatial aliasing artifacts,
but it is probably the benefits of "distributed ray tracing" which have provided the greatest motivation for
dealing with the complications of these techniques. Distributed ray tracing is a method of rendering images
with motion blur, depth of field effects, and illumination by area light sources [Cook84].

Area Lightsource

•

Visible Point
+

Image Plane
Viewpoint

Ray

Image Point Moving Object
+

Figure 18. Distributed Ray Tracing

Figure 18 illustrates a simple example with an area light source and a moving object. The image function
I (x, y, t, u, v) now has more parameters to sample than a simple ray tracer. A single evaluation of this func-
tion gives a color value for some point (x, y) on the image plane, at some point in time t, illuminated by
some point (u, v) on the area light source. This in itself does not require any techniques not found in the
image function of a standard ray tracer. Howev er, a fully antialiased pixel value represents an average over
all these parameters; the area of a pixel, the interval of the time exposure, and the surface of the light
source.

It is not practical to apply randomized block sampling in the obvious way. Dividing the five-dimensional
parameter space into four levels in each dimension would yield 45 = 1024 blocks—too many to compute a
sample in each one. In the field of survey sampling and experimental design, there are numerous compro-
mises which use sparser sampling [Davies56].

One such strategy is the Latin square design. Suppose that we wish to simulate motion blur by sampling a
three-parameter image function I (x, y, t). Let the temporal dimension be divided into four adjacent inter-
vals labeled A, B, C, and D. The pixel area can be divided into 4 x 4 cells, and a temporal block associated
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with each cell:

A

B

C

D

B

A

D

C

C

D

A

B

D

C

B

A

(13)

Using this arrangement, 16 randomized samples are made, one in each subpixel cell and its associated tem-
poral block. The advantage of this design is that it may avoid possible effects of correlation between sub-
pixel location and object motion. Each row and each column contains a sample from each temporal block.
Cook has described using a "magic square" design to accomplish the same effect [Cook85].

With additional parameters to sample, it is possible to construct additional Latin squares which are orthogo-
nal. For example, labeling two additional parameter blocks with greek letters and numerals, we have:

Aα 1

Bγ 4

Cδ 2

Dβ 3

Bβ 2

Aδ 3

Dγ 1

Cα 4

Cγ 3

Dα 2

Aβ 4

Bδ 1

Dδ 4

C β 1

Bα 3

Aγ 2

(14)

In this arrangement, each combination of pairs of blocks occurs just once. Now samples are being made in
16 of the possible 1024 blocks, and each pair of parameter levels (row, column, Latin letter, Greek letter,
and numeral) occurs an equal number of times. The effect of these types of statistical sampling designs on
ray-traced image quality has not been fully studied.

These techniques are concerned with intra-pixel sampling strategies, but one can also consider inter-pixel
design. Suppose that in each 4 x 4 block of pixels, we sample time in 16 possible blocks as follows:

0

8

2

10

12

4

14

6

3

11

1

9

15

7

13

5

(15)

This matrix happens to be the same as the ordered-dither matrix used in halftoning [Limb69]. In one sim-
ple experiment, the author ray traced a scene containing moving objects, using only one sample per pixel
and the above inter-pixel temporal blocking. The image was, at first glance, remarkably good. The motion-
blur, on closer inspection, had a finely stippled appearance. The temporal-aliasing noise had been forced
into the form of a high-frequency pattern, just as ordered dither does to quantization noise. This phenom-
ena probably merits further study.

6. Temporal Antialiasing

The effects of temporal sampling deserve special attention. At the present time, there are two major vehi-
cles for displaying moving images; video and cine (i.e., motion pictures). Both of these mediums involve
sampling in the time dimension, at 24 frames per second in cine or 30 in video (video is 25 frames per sec-
ond in some countries). Like any instance of sampling, aliasing is a potential problem.

Anyone who has played with a strobe light is familiar with the odd effects of temporal aliasing. There is a
peculiar jerky quality to motion, and a spinning wheel may appear to turn backwards. These effects are
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called strobing or motion judder. Like a strobe light, the opening and closing of a movie-camera shutter
can produce the same effects, and so can a computer-generated animation which is rendered as a sequence
of still frames.

This aliasing can be removed by temporal prefiltering, which is often called motion blur. In a movie cam-
era, this prefiltering is accomplished by simply exposing each frame for some interval of time (typically
1/48th of a second or less). In a ray tracer, this same procedure is simulated by stochastically sampling
over an interval of time, as discussed in section 5.2.

However, motion blur is not a panacea. Motion blur looks realistic when viewers are not tracking a moving
object with their eyes. But during visual pursuit, the image of the object is more or less fixed on the retina,
and then motion blur results in an unnatural smeared appearance (and lack of motion blur may result in
severe judder). The only way to eliminate this problem would be to greatly increase the frame rate of
motion pictures and video—the effects of temporal aliasing are visible even at 120 frames per second
[Hsu85]. Given the current standardized frame rates, judgements about the degree of motion blur versus
judder are generally made by the cinematographer or videographer; it is more of an artistic issue than an
engineering problem.

Aggressive low-pass filtering is almost never called for, since this would produce extreme motion blur.
This is why sophisticated filter designs are not worth considering; just integrating over an interval of time is
sufficient. Motion blur should be applied minimally, and only if strobing is judged to be a problem; other-
wise the sharpest images are made by doing no temporal filtering at all. Generally, more motion blur is
needed in cine than in video because of the lower temporal sampling rate.

In a single frame of an animation, a motion-blurred object seems to be spatially filtered along the direction
of motion. Motion blur can be simulated by this principle; filtering an object spatially instead of actually
sampling a time interval [Potmesil83]. Unfortunately, this algorithm does not always produce correct
results (e.g., a moving mirror).

A ray tracer is not constrained to imitate the action of a physical camera. It is possible to apply different
degrees of motion blur to different objects in the same scene. Perhaps this would be a useful feature to a
cinematographer, a possible topic for further study.

Generating antialiased video presents some special problems not encountered with cine. A video signal
represents the scanning of a moving 2D image at the rate of 30 frames per second (25 in some countries).
This scanning is interlaced, which means the odd-numbered lines are scanned in the first 1/60th second,
and then the even lines are scanned. Figure 19 illustrates this scanning process in a slice perpendicular to
the horizontal scan lines. This view in (t, y) coordinates illustrates the discrete sampling nature of the scan-
ning process.
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Figure 19. (t, y) Slice Through Interlaced Scans

When a signal is sampled, the resulting interlaced video spectrum consists of replicas of the spectrum of the
original signal. Figure 20 shows the spectral consequences of interlaced sampling.

ft30 Hz

f y

0.5 cycles
per scanline

C

Figure 20. (t, y) Spectrum of Interlaced Digital Video

An annoying aliasing artifact of interlaced video is interline flicker. This results from the sideband centered
at (30 Hz, 0.5 CPS) in the figure above. In particular, any signal near (0 Hz, 0.5 CPS) will be duplicated by
this sideband at (30 Hz, 0 CPS). An obvious example would be a pattern which is brighter at every other
scan line, which will cause the whole display to flicker at 30 Hz. A more typical manifestation of flicker is
crawling jaggies ("line crawl") or fluctuating Moiré patterns.

The flicker problem is largely caused by the display (i.e., it is postaliasing), and could be eliminated by
properly designed "de-interlacing" monitors. However, with standard interlaced monitors, the best that can
be done is to carefully limit vertical frequencies near 0.5 cycles per scanline. Television cameras must also
do this, typically integrating over a path two lines high as they scan.
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Figure 21. Interlaced Spatiotemporal Box Filter

Figure 21 shows a possible filter for interlaced video. Each pixel is an average over two lines high, one
pixel wide (perpendicular to this view) and 1/60th of a second in duration. That is probably far to much
motion blur, and in practice the time duration should be adjustable. Regardless of the amount of temporal
filtering (if any), it is vital that the scanlines be interlaced in time.

In broadcast video (NTSC) there can also be problems if detail in the scene causes aliasing with the color
subcarrier. This and other problems of generating antialiased video have been studied in some detail
[Chuang85, Amanatides90].

7. Digital Filter Design

Antialiasing by resampling usually uses a digital filter to derive pixel values from the ray-casting samples.
It is often expedient to use a very simple filter—averaging over a square pixel area is equivalent to convolv-
ing the image function with a square box filter and then sampling at the pixel locations. A box filter is not
particularly good, as we will see, but it seems to be adequate for suppressing the most gross jagged-edge
artifacts. In nonuniform-reconstruction schemes like Painter and Sloan’s, almost any filter can be used, and
so the issue of filter design becomes of practical importance.

One of the main objectives of prefiltering (whether it is symbolic filtering or digital filtering of supersam-
ples) is to prevent aliasing during pixel-rate sampling. As Figure 1 shows, the spectrum of the image func-
tion must be confined to a bounded region (the dotted box) to prevent overlap with sidebands.

From that diagram, it is tempting to think that the optimum solution would be a prefilter that passes every-
thing inside the dotted box unchanged and completely stops the signal outside the box—like a cookie cut-
ter. In other words, the sampled spectrum is to be multiplied by a function K ( f x , f y) which is equal to 1
inside the dotted box and equal to zero everywhere else. This is the two-dimensional ideal low-pass filter,
and its kernel is:

k(x, y) = sinc(x)sinc(y) =
sin(π x)

π x

sin(π y)

π y
(16)

In practice, this ideal behavior is impossible. Actual filters cannot be infinite in width, and in fact there is a
computational advantage to keeping the width of the reconstruction kernel as small as possible (e.g., the
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integral in equation (6) must be performed over the width of the kernel). There are two consequences of
using a non-ideal filter; the baseband (inside the dotted box in Figure 1) might be attenuated in some way,
and some of the alias-causing sidebands might leak thru.

If a lot of sideband leakage occurs, then aliasing will result. If the baseband is strongly attenuated, then the
image may be badly blurred. Unfortunately, even if a nearly ideal low-pass filter is used, severe ringing can
occur around sharp edges in the image. Figure 22 illustrates this phenomenon in one dimension:

filtered

unfiltered

Figure 22. Ringing Caused by Ideal Low-Pass Filter

A tradeoff exists between ringing, blurring, and aliasing; and no filter will eliminate all three artifacts. The
commonly-used box filter is poor because of the high degree of aliasing. Gaussian filters tend to cause
problems with blurring or aliasing.

Classical digital filter design tends to emphasize close approximation of ideal low-pass behavior [Ham-
ming83], but for images this causes too much ringing. It is also a problem that filters with sharp frequency
cutoff are necessarily very wide, and this increases the computational expense of performing the convolu-
tion with k(x, y). Some degree of ringing can be beneficial and gives a crisp appearance to an image, but
this is somewhat risky since it may cause parts of the image to be clipped in intensity (if ringing dips below
zero intensity or overshoots the maximum digital value).

Schreiber and Troxel consider these issues and recommend a sharpened Gaussian filter [Schreiber85].
Mitchell and Netravali recommend members of a two-parameter family of piecewise cubic filters
[Mitchell88].

k(x) =
1

6









(12 − 9B − 6C)|x|3 +
(−18 + 12B + 6C)|x|2 + (6 − 2B)

(−B − 6C)|x|3 + (6B + 30C)|x|2 +
(−12B − 48C)|x| + (8B + 24C)

0

if |x| < 1

if 1 ≤ |x| < 2

otherwise

(17)

In two dimensions, the separable kernel k(x)k(y) is used. The (1/3, 1/3) filter seems to represent a good
tradeoff between the various image-quality properties, suppressing ringing, blurring, and aliasing fairly
well.

A second important application of digital filter design is in two-dimensional mapped texture. In a view of
an object which greatly magnifies the texture, the subjective quality of the interpolation is very important.
Both the sharpened Gaussian and the (1/3, 1/3) bicubic filters are designed to perform well under those cir-
cumstances, with a low degree of anisotropy and low visibility of sample-frequency structure.

When a view of a textured surface happens to greatly reduce a complex texture, this can create rather high
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frequencies which place a demand on the ray tracer’s antialiasing capabilities. An interesting question is
whether or not texture-prefilting methods [Heckbert86], used in scan conversion, should be applied to ray
tracing. Some of these algorithms provide the necessary capability of sampling the texture at an arbitrary
location with an arbitrary amount of two-dimensional prefiltering (e.g., the sum-table method [Crow84]).

There are still open problems with regard to prefiltering texture in ray tracers. The interaction of the texture
filter, and the ray tracer’s antialiasing algorithm should be considered. Ray traced images often contain
complex curved surfaces, and some prefiltering algorithms may not perform perfectly well (e.g., filters may
extend into hidden portions of the surface). Perhaps the most difficult problem is prefiltering a texture for
secondary rays. If a textured object is seen in the reflection of a curved surface, what is the proper amount
of prefiltering?
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