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ABSTRACT

Antialiased pixel values are often computed as the mean o
point samples. Using uniformly distributed random samples, t

central limit theorem predicts a variance of the mean of O(N-1).
Stratified sampling can further reduce the variance of the me
This paper investigates how and why stratification effects t
convergence to mean value of image pixels, which are obser

to converge from N-2 to N-1, with a rate of about N-3/2 in pixels
containing edges.  This is consistent with results from the the
of discrepancy.  The result is generalized to higher dimensio
as encountered with distributed ray tracing or form-fact
computation.

CR Categories and Descriptors: I.3.3 [Computer Graphics]:
Picture/Image generation.

Additional Key Words: Sampling, Stratification, Discrepancy,
Antialiasing, Variance Reduction.

INTRODUCTION

One of the most general solutions to the aliasing problem 
image synthesis is to supersample, compute many sample va
within a pixel area and average them to estimate the act
integral of the image over an area.  Several different theor
have been applied to this sampling problem.  Shanno
sampling theorem provides the justification for sampling at
higher density when an image is not sufficiently bandlimited f
sampling at the pixel rate.  The signal-processing viewpoint
not perfectly suited for treating the sampling of discontinuo
signals (i.e., an image with sharp edges) or for understand
nonuniform sampling methods, although nonuniform samplin
has been analyzed from this standpoint [Dippe85, Cook8
Mitchell87].

Another point of view is the theory of statistical sampling o
Monte Carlo integration [Lee85, Kajiya86, Purgathofer86
Painter89].  The pixel value is estimated by the mean of a
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number of samples taken within the pixel area.  If the pixel ar
is sampled at uniformly distributed random locations, the centr

limit theorem implies that the variance of the mean is O(N-1).
This is true even if the pixel area contains edges or if the doma
being sampled has an unusual topology (e.g., sampling a funct
on the surface of a sphere) – cases where signal process
theory is difficult to apply.

A third viewpoint is the theory of discrepancy, which deals wit
the ability of a sampling pattern to estimate areas of subregio
in a pixel.  Quasi Monte Carlo methods [Halton70] are based 
deterministic sampling patterns with low discrepancy, typicall
optimized to estimate the area of arbitrary axis-aligned rectang
within a square pixel area.  Shirley introduced this sampl
pattern quality measure to computer graphics [Shirley91], a
Dobkin et al. introduced and analyzed a discrepancy measu
based on arbitrary edges through a pixel [Dobkin93].

The most commonly used sampling strategy in ray tracing a
distributed ray tracing is stratified sampling (often equivalent t
the so-called jittered sampling patterns).  This type of samplin
has been studied from all three theoretical viewpoints mention
above.  This paper presents some theory and observations a
the consequences of stratified sampling in computer graphics.

EXPERIMENTAL OBSERVATIONS

In the statistical viewpoint, a pixel value is the mean value of
small square area in an image.  This assumes the use of a 
filter, which is not ideal.  Using a better filter simply involves
computing a weighted mean, so for simplicity we will restrict th
discussion to pixel-area averaging.  A pixel value is estimated 
a sample mean, the average of a number of point samples wit
the pixel area.  The variance of the sample mean is a measur
the accuracy of this pixel estimate.

The variance of the mean can be directly measured by repeate
estimating the same pixel with M independent trials of N
samples xi:
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Figure 1. One of several ray-traced images analyzed.

A simple experiment demonstrates the O(N-1) behavior predicted
by the central limit theorem.  Choose a set of pixels to study in
ray traced image such as the one shown in Figure 1.  
progressively increasing values of N, measure the variance of the
mean by performing M trials of uniformly distributed random
samples.  Plotting the log of the variance versus the log of
shows points fitting closely to a line of slope 1, for any pixel ar
in the image.  Figure 2 shows a histogram of the measured slo
(derived from least-square fits) for test pixels.
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Figure 2. Convergence of the Mean for Uniformly Distributed
Random Sampling of Pixels.

A standard variance-reducing technique is stratified samplin
Instead of distributing N random samples uniformly within the

pixel area, the area can be divided into a grid of N N× cells,
with one sample placed randomly within each cell.  Th
literature of Monte Carlo methods contains varying commen
about the effectiveness of stratification.  Hammersley reports
a
r
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a

“general rough working rule” that stratification gives a varian

of the mean of O(N-3) [Hammersley64].  Hammersley was
commenting on the numerical integration of one-dimension
functions.  Looking at multi-dimensional radiation transpo
Spanier reports that stratification doesn’t give much bene
[Spanier69].

y = -1.5035x - 2.7735

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8

Figure 3.  Measured variance of mean for a pixel versus

It seems appropriate then to actually measure the variance o
mean in the pixels of an image.  Using several ray-traced ima
M = 50 trials were performed with stratified sampling for N
taking on values of 1, 4, 9, 16, … up to 256, and performe
least-square fit in log space to measure the closest fit t

convergence of the mean of the form O(N-p).  Figure 3 shows the
data from one pixel and the least-square fit.  Figure 4 shows
histogram of resulting values of p, using pixels from the image in
Figure 1.  The result is typical: a range of values from 1.0 to 2
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Figure 4. Convergence of the Mean for Stratified Sampling 
Pixels.

By inspecting various pixels and their associated rates 
convergence, three fairly distinct types can be found.  Are
containing extremely complex features converge with a varia

proportional to N-1.  Areas containing smooth regions of th
image exhibit a variance of the mean that converges m

rapidly, as N-2.  Pixels that exhibit N-3/2 variance are found to
contain smooth areas delimited by a few edges.  Figure 5 sh
several typical examples:
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Figure 5.  Pixels with p = 1.89, 1.45, and 1.12.

THEORETICAL ANALYSIS

The N-1 behavior in highly complex regions of the image is n
surprising, since this is what would result from sampling
randomly varying function, according to the central lim
theorem.  There is no benefit from stratification in this case.

The N-3/2 behavior in pixels with edges is consistent with th
arbitrary-edge discrepancy of stratified/jittered sample patter
as proven in Beck and Chen [Beck87]. In their derivation of t
discrepancy, they note that edge discontinuities are o
dimensional features.  As N (the number of samples and th

number of strata) increases, an edge intersects only O N( )

strata.  In computing the variance of the mean, the samples in
edge-crossing strata will dominate.  Each sample xi is given a

weight of 1/N, and so the total variance of the mean is:
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This is equivalent to a convergence of the standard devia

(square root of variance) proportional to N-3/4.  This is in line
with Beck and Chen’s bounds for arbitrary edge discrepancy 

Ω( )/N −3 4  and O N N( log )/ /−3 4 1 2  [Beck87].  Dobkin et al. and

Cross have used simulated annealing to generate samp
patterns with nearly half the discrepancy of jittered patte
[Dobkin94, Cross95].  These patterns may yield smaller pi
error, but Beck and Chen’s lower bound proves that no patt
will be asymptotically better than jittered samples.

This analysis can be generalized to the case of N strata in d
dimensions, with a sharp discontinuity of k dimensions.  In this

case, we expect O(Nk/d) strata to be cut by the discontinuity an
dominate the variance.  In that case, the variance of the m

should converge as O(Nk/d-2).

The O(N-2) convergence in smooth regions of the image can
justified if we make the fairly general assumption that the ima
obeys a Lipshitz smoothness condition within the pixel ar
That is, the range of values of the image function f(x) (where x is
a point in d dimensions) is no more than a constant factor tim
the diameter of the region:
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In d dimensions, the diameter of each strata is proportional

N-1/d and so we expect the standard deviation (root of t
variance) of the function to be lower by the same proportio
The variance of the average of samples taken from each st
should therefore be:
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For d=2, this agrees with the observed result of O(N-2).  It may
also explain Hammersley’s “working rule” for one-dimensiona
smooth functions, while Spanier was working with radiatio
transport problems of high dimension and saw less benefit fr
stratification.

A FOUR-DIMENSIONAL EXPERIMENT

An additional experiment was done to test these results in hig
dimensions.  The calculation of the form factor between tw
parallel unit squares (two units apart and aligned) was compu
by Monte Carlo integration in four dimensions.  Once again, t
result was recomputed with M = 50 independent trials for values

of N = 14, 24, … 104, and an estimation of the variance of th
mean was found for each value of N.  Since this is a smooth
function with a four-dimensional domain, we expect 

convergence of O(N-3/2).  The measured least-square fit to th
data (in log space) gave p = 1.430.  Removing the first (least
accurate) point from the set gave p = 1.501.

The same experiment was then performed, with a sma
occluding square between the two planes.  For each point o
given (two-dimensional) plane, the perimeter of the occludin
square presents a one-dimensional discontinuity in t
differential form factor.  Thus, the overall discontinuity in th
form factor is three-dimensional.  Thus for d = 4 and k = 3, we

expect a convergence of the mean of O(N-5/4).  The measured
result was p = 1.233, and with the N = 1 point removed we
found p = 1.245.

CONCLUSIONS

Stratified sampling is commonly used in ray tracing an
distributed ray tracing, but its benefit has not been ful
analyzed.  Pixel accuracy is strictly improved by usin
stratification.  For N = 1 samples per pixel, uniformly distributed
random sampling and stratified sampling are the same, and aN
increases, stratified sampling will often converge to the me
asymptotically faster than uniform random sampling.

The improvement in pixel accuracy depends on the nature of 
image within the pixel area.  In the worst case, stratification is 
better (but no worse) than uniform random sampling, .  If a fini
number of edges pass through the pixel area, we expect

variance of the mean to be lower by a factor of N1/2.  If the image
is smooth within the pixel area, we expect a variance of the me
to be lower by a factor of N.

The absolute pixel error will actually be proportional to th
square root of the variance (ie., the standard deviation). T
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asymptotic reduction of error due to stratification is a little le
impressive when we take the square root.  The benefits
stratification are probably a mix of genuine error reduction a
the spectral consequences of jittering as described by Dip
Cook and Mitchell (i.e., the tendency of these sampling patte
to distribute the error in a high frequency pattern over t
image).
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