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number of samples taken within the pixel area. If the pixel area
ABSTRACT is sampled at uniformly distributed random locations, the central

Antialiased pixel values are often computed as the mean of Nlimit theorem implies that the variance of the mea©O@?).

point samples. Using uniformly distributed random samples, the This is true even if the pixel area contains edges or if the domain
being sampled has an unusual topology (e.g., sampling a function
on the surface of a sphere) — cases where signal processing
theory is difficult to apply.

central limit theorem predicts a variance of the mean of &)(N
Stratified sampling can further reduce the variance of the mean.
This paper investigates how and why stratification effects the

convergence to mean value of image pixels, which are observed . . L . . .
9 ep A third viewpoint is the theory of discrepancy, which deals with

to converge from K¢ to lel with a rate of about N2in pixels the ability of a sampling pattern to estimate areas of subregions
cont.alnlng edges. This is can|stent vylth result.s from .the th.eoryin a pixel. Quasi Monte Carlo methods [Halton70] are based on
of discrepancy. The result is generalized to higher dimensions,yeterministic sampling patterns with low discrepancy, typically

as encountered with distributed ray tracing or form-factor ontimized to estimate the area of arbitrary axis-aligned rectangles
computation. within a square pixel area. Shirley introduced this sample-

pattern quality measure to computer graphics [Shirley91], and
Dobkin et al. introduced and analyzed a discrepancy measure
based on arbitrary edges through a pixel [Dobkin93].

CR Categories and Descriptors:l.3.3 [Computer Graphics]:
Picture/Image generation.
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o i 8 The most commonly used sampling strategy in ray tracing and
Antialiasing, Variance Reduction.

distributed ray tracing is stratified sampling (often equivalent to
the so-called jittered sampling patterns). This type of sampling
INTRODUCTION has been studied from all three theoretical viewpoints mentioned
One of the most general solutions to the aliasing problem inabove. This paper presents some theory and observations about
image synthesis is to supersample, compute many sample valuedie consequences of stratified sampling in computer graphics.
within a pixel area and average them to estimate the actual

integral of the image over an area. Several different theories

have been applied to this sampling problem. Shannon’s EXPERIMENTAL OBSERVATIONS

sampling theorem provides the justification for sampling at a | the statistical viewpoint, a pixel value is the mean value of a
hlgher. density whgn an image is not sufficiently .bandlllmlteq fo.r small square area in an image. This assumes the use of a box
sampling at the pixel rate. The signal-processing viewpoint is fijter, which is not ideal. Using a better filter simply involves
not perfectly suited for treating the sampling of discontinuous computing a weighted mean, so for simplicity we will restrict the
signals (i.e., an image with sharp edges) or for understandinggiscyssion to pixel-area averaging. A pixel value is estimated by
nonuniform sampling methods, although nonuniform sampling 5 sample mean, the average of a number of point samples within
has been analyzed from this standpoint [Dippe85, Cook86, the pixel area. The variance of the sample mean is a measure of

Mitchell87]. the accuracy of this pixel estimate.

Another point of view is the theory of statistical sampling or The variance of the mean can be directly measured by repeatedly
Monte Carlo integration [Lee85, Kajiya86, Purgathofer86, estimating the same pixel witM independent trials ofN
Painter89]. The pixel value is estimated by the mean of a samplesq:

=L
TN

N
X
i=1


Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.



“general rough working rule” that stratification gives a variance

of the mean ofO(N'3) [Hammersley64]. Hammersley was

commenting on the numerical integration of one-dimensional
functions. Looking at multi-dimensional radiation transport,
Spanier reports that stratification doesn’t give much benefit
[Spanier69].
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Figure 3. Measured variance of mean for a pixel versus

Figure 1. One of several ray-traced images analyzed.

It seems appropriate then to actually measure the variance of the
mean in the pixels of an image. Using several ray-traced images,
A simple experiment demonstrates ®E\N'1) behavior predicted M = 50 trials were performed with stratified sampling fr

by the central limit theorem. Choose a set of pixels to study in ataking on values of 1, 4, 9, 16, ... up to 256, and performed a

ray traced image such as the one shown in Figure 1. Forleast-square fit in log space to measure the closest fit to a

progressively increasing valuesdf measure the variance of the convergence of the mean of the fo@(\P). Figure 3 shows the

mean by performingv trials of uniformly distributed random = a5 from one pixel and the least-square fit. Figure 4 shows the

samples. Plotting the log of the variance versus the 10g of Nyqi0qram of resulting values pfusing pixels from the image in
shows points fitting closely to a line of slope 1, for any pixel area pjg e 1. The result is typical: a range of values from 1.0 to 2.0.
in the image. Figure 2 shows a histogram of the measured slopes

(derived from least-square fits) for test pixels.
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Figure 2. Convergence of the Mean for Uniformly Distributed

- . By inspecting various pixels and their associated rates of
Random Sampling of Pixels.

convergence, three fairly distinct types can be found. Areas

. . . . . . containing extremely complex features converge with a variance
A standard variance-reducing technique is stratified sampling.

Instead of distributing\ random samples uniformly within the

pixel area, the area can be divided into a grid/ﬁ X \/ﬁ cells,
with one sample placed randomly within each cell.

literature of Monte Carlo methods contains varying comments
about the effectiveness of stratification. Hammersley reports a

proportional toN'l. Areas containing smooth regions of the
image exhibit a variance of the mean that converges more

The "apidly, asN"2. Pixels that exhibitN"3/2 variance are found to
contain smooth areas delimited by a few edges. Figure 5 shows
several typical examples:



In d dimensions, the diameter of each strata is proportional to

N-Ld and so we expect the standard deviation (root of the
variance) of the function to be lower by the same proportion.
The variance of the average of samples taken from each strata
should therefore be:

N
1 2\ -1/d\2 _ -1-2/d
Figure 5. Pixels with p = 1.89, 1.45, and 1.12. ani (N )" =0O(N )
i=1

THEORETICAL ANALYSIS For d=2, this agrees with the observed resulOgN2). It may
1 o ) ) ) also explain Hammersley's “working rule” for one-dimensional
The N"* behavior in highly complex regions of the image is not smooth functions, while Spanier was working with radiation

surprising, since this is what would result from sampling & transport problems of high dimension and saw less benefit from
randomly varying function, according to the central limit g atification.

theorem. There is no benefit from stratification in this case.
A FOUR-DIMENSIONAL EXPERIMENT

The N 32 behavior in pixels with edges is consistent with the A, 4qgitional experiment was done to test these results in higher
arbitrary-edge discrepancy of stratified/jittered sample pattems, 4y ansions.  The calculation of the form factor between two
as proven in Beck and Chen [Beck87]. In their derivation of the ;o jje] unit squares (two units apart and aligned) was computed
discrepancy, they note that edge discontinuities are one-p \ionte Carlo integration in four dimensions. Once again, the
dimensional features. AN (the number of samples and the | oq it was recomputed witd = 50 independent trials for values
number of strata) increases, an edge intersects GEYN) of N = 14, 24 ... 10% and an estimation of the variance of the
strata. In computing the variance of the mean, the samples in thenean was found for each value Mf Since this is a smooth
edge-crossing strata will dominate. Each samplis given a function with a four-dimensional domain, we expect a

weight of1/N, and so the total variance of the mean is: convergence 0O(N'3/2). The measured least-square fit to the
data (in log space) gaye = 1.430 Removing the first (least
JIN 2 accurate) point from the set ggves 1.501
o? = 1 Za-z =9
X N2 NN . )
N Z N The same experiment was then performed, with a smaller

occluding square between the two planes. For each point on a
This is equivalent to a convergence of the standard deviationgiven (two-dimensional) plane, the perimeter of the occluding
square presents a one-dimensional discontinuity in the
differential form factor. Thus, the overall discontinuity in the
form factor is three-dimensional. Thus fb= 4 andk = 3, we

(square root of variance) proportional X634 This is in line
with Beck and Chen’s bounds for arbitrary edge discrepancy are

Q(N¥*) and O(N"¥*log N¥ ?) [Beck87]. Dobkinet al and

Cross have used simulated annealing to generate samplin
patterns with nearly half the discrepancy of jittered patterns
[Dobkin94, Cross95]. These patterns may yield smaller pixel
error, but Beck and Chen’s lower bound proves that no pattern
will be asymptotically better than jittered samples.

expect a convergence of the meanOgN'>/4). The measured
Fesult wasp = 1.233 and with theN = 1 point removed we
foundp = 1.245.

CONCLUSIONS

Stratified sampling is commonly used in ray tracing and
This analysis can be generalized to the cas#l sfrata ind distributed ray tracing, but its benefit has not been fully
dimensions, with a sharp discontinuitylotlimensions. In this  analyzed.  Pixel accuracy is strictly improved by using

case, we expe@(NY strata to be cut by the discontinuity and Stratification. FoiN = 1 samples per pixel, uniformly distributed

dominate the variance. In that case, the variance of the mearfandom sampling and stratified sampling are the same, aNd as
should converge (\K/d-2) increases, stratified sampling will often converge to the mean

asymptotically faster than uniform random sampling.

2 i i i . . .
The O(N'®) convergence in smooth regions of the image can be The jmprovement in pixel accuracy depends on the nature of the
justified if we make the fairly general assumption that the image jmage within the pixel area. In the worst case, stratification is no
obeys a Lipshitz smoothness condition within the pixel area. petter (but no worse) than uniform random sampling, . If a finite
That is, the range of values of the image funct{gh(wherex is number of edges pass through the pixel area, we expect an

a point ind dimensions) is. no more than a constant factor times variance of the mean to be lower by a factoN®2. If the image
the diameter of the region: is smooth within the pixel area, we expect a variance of the mean
to be lower by a factor dfl.
0=t _
x-y The absolute pixel error will actually be proportional to the
square root of the variance (ie., the standard deviation). The



asymptotic reduction of error due to stratification is a little less

impressive when we take the square root. The benefits of[Shirley9l] P. Shirley. Discrepancy as a quality measure for
stratification are probably a mix of genuine error reduction and sample distributionsProc. Eurographic§1991) 183-193.

the spectral consequences of jittering as described by Dippe,

Cook and Mitchell (i.e., the tendency of these sampling patterns[Spanier69] J. Spanier and E. M. Gelbardvionte Carlo

to distribute the error in a high frequency pattern over the Principles and Neutron Transport Problem#\ddison-Wesley,
image). Reading, MA, 1969.
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