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Patterns used for supersampling in graphics have been analyzed from statistical and signal-
processing viewpoints. We present an analysis based on a type of isotropic discrepancy—how
good patterns are at estimating the area in a region of defined type. We present algorithms for
computing discrepancy relative to regions that are defined by rectangles, halfplanes, and
higher-dimensional figures. Experimental evidence shows that popular supersampling pat-
terns have discrepancies with better asymptotic behavior than random sampling, which is not
inconsistent with theoretical bounds on discrepancy.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical problems and computations; 1.3.3
[Computer Graphics]. Picture/Image Generation—antialiasing

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Discrepancy, ray-tracing, supersampling

1. INTRODUCTION

Supersampling is one of the most general approaches to the antialiasing
problem in graphics. Since synthetic images usually cannot be prefiltered,
aliasing is reduced by sampling at a very high rate, and then digitally
resampling to the pixel rate. In applications like ray tracing and distribu-
tion ray tracing, this is the only general solution to aliasing currently
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known. In the simplest form of resampling, supersamples are averaged
within a square pixel area to compute a pixel value.

Supersampling can be done in a uniform pattern, but it has been shown
that there are advantages to using nonuniform or stochastic sampling
patterns. Uniform sampling can lead to visually conspicuous aliasing
artifacts like Moiré patterns. This is worst-case behavior in the context of
adaptive sampling, where a pure high-frequency signal aliased to a pure
low-frequency pattern will fool schemes for deciding where to apply extra
samples [Whitted 1980]. Randomizing the sampling pattern leads to ran-
dom-noise aliasing and is more likely to avoid the worst-case scenario for
adaptive sampling.

The quality of sampling patterns has been analyzed from several view-
points. Estimating the integral of a pixel area by averaging samples can
also be viewed as a statistical sampling problem, and variance-reducing
techniques of experimental design (e.g., stratification) can be applied
[Kajiya 1986; Lee et al. 1985; Painter and Sloan 1989; Purgathofer 1986].
The Central Limit Theorem implies that pixel error will decrease with the
number of samples as O(n~ '2), but the statistical viewpoint has the
weakness that it only considers the error or variance of isolated pixels, and
not the overall pattern or spectrum of the image noise.

Some researchers have taken a signal-processing viewpoint of the image-
sampling problem [Cook 1986; Dippé and Wold; Mitchell 1987] and of the
distribution ray-tracing problem [Mitchell 1991]. Here, it has been shown
that sampling patterns can be designed to drive aliasing noise into higher
frequencies, where it may be removed by the pixel-resampling process and
where it is less visually conspicuous. This is achieved with samples having
a high-frequency spectrum (“blue-noise”).

A third viewpoint that can be applied to the problem of sample-pattern
analysis is the theory of discrepancy or irregularities of distribution [Beck
and Chen 1987]. This viewpoint was introduced to computer graphics by
Shirley [1991]. Niederreiter [1992] has also pointed out the possible impor-
tance of discrepancy in computer graphics. This subject grew out of the
study of certain low-discrepancy sampling patterns which have been used
in quasi-Monte Carlo integration [Halton 1970; Neiderreiter 1978]. What is
interesting about discrepancy is that it provides a fairly direct measure-
ment of how good a sampling pattern is at estimating certain simple
integrals. From the theory of this subject has emerged the fascinating fact
that some sampling patterns yield sampling errors that are asymptotically
smaller than the O(n '2) of uniform random sampling. Crucial to this
process are efficient algorithms for actually computing the discrepancy in
various models. This topic is the focus of our work here.

Our domain in all that follows will be the unit cube [0, 1]*. For many
graphics applications, £ = 2; the unit square then corresponds to a single
pixel of image space. However, this need not be the case. Distributed ray
tracing as introduced by Cook [1984] involves sampling in a space including
the pixel as well as time, lens area, light areas, and other effects. The goal
will be to measure the quality of a finite point set X C [0, 1]%*. Quality will
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Figure 1. Example of planar discrepancy.

be measured as the maximum discrepancy of the set with respect to
families of regions S C R” of a particular type. We let w(S) be the
Euclidean measure of S N [0, 1]1*, and ux(S) be the discrete measure |S N
X|/|X|. The discrepancy of X at S is measured by the formula

ds(X) = ‘P«(S) - MX(S)"

This can be interpreted as the difference between the expected number of
points of X in S (estimated from the area of S) and the actual cardinality of
X N 8. It gives a bound on the accuracy of ux as an approximation to u. As
an example, Figure 1 depicts a set X of eight Hammersley points in the unit
square, along with a quadrant @ intersecting the square. The area of
intersection is 9/16, while seven of the eight points are in the intersection,
so the discrepancy dg(X) is [9/16 — 7/8| = 5/16.
If F is the set of all regions of the given type, the overall discrepancy is

DF(X) = max ds(X).
Ser
(In this paper we concentrate on the L™ discrepancy, which we have defined
above, and which gives a worst-case measure of the accuracy of puy. With
further information such as a probability distribution or measure on the
members of F', one can also define similar L? discrepancies, which give
more of an average case measure of the quality of wy; an example of such a
definition is included in our section on rectangle discrepancy.)

Typically, one wishes to construct a set X with as small a discrepancy as
possible, relative to some family F. A common heuristic is based on
simulated annealing. A multidimensional local-optimization algorithm is
applied repeatedly to randomly jiggled versions of a low discrepancy
pattern to search for smaller local minima. The jiggling is gradually
reduced as the computation proceeds. In order to perform such a simulated
annealing algorithm, we need a way of computing the discrepancy of any
given set. Further, since each successive set differs from the previous ones
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by the inclusion of relatively few points, it will be helpful to find dynamic
discrepancy algorithms, that is, algorithms that can update the discrepancy
after points are inserted to and deleted from the set X.

Surprisingly, there seems to be little work on computation of discrep-
ancy. In this paper, we consider the families of regions defined by half-
spaces and orthants. (An orthant is a higher dimensional generalization of
a quadrant formed by intersecting a collection of £ halfspaces with orthog-
onal boundaries.) We discuss the experimental discrepancy of various point
sets. We also develop algorithms for computing the discrepancy of a point
set, and for maintaining the discrepancy as the set undergoes dynamic
point insertions and deletions. In addition to lying at the heart of a
practical problem, the data structuring issues are non-trivial extensions of
known techniques.

2. DISCREPANCY OF LINE SEGMENTS

We first consider a very simplified case of discrepancy, for one-dimensional
point sets (subsets of the real line). We later use our solutions to this
problem as subroutines in algorithms for higher dimensional problems of
more practical relevance.

We consider discrepancy relative to line segments having the origin as one
endpoint. The discrepancy is the difference between the length of the segment
and the relative number of samples in the segment. As noted above, this is a
reasonable measure of the quality of the sampling set. We note that this
measure of discrepancy (in absolute value) will be realized by an interval
(half-open or closed) having a point of X as its boundary: any other segment
can be extended or shrunk, increasing or decreasing the length of its intersec-
tion with [0, 1] but not changing its intersection with X.

Thus the problem can be reformulated as follows. We are given a
sequence of n points x;, 1 =i =n, 0 = x; < x;,; = 1, and we wish to
maximize either x; — (i — 1)/n or i/n — x; depending upon whether the
interval is half-open or closed. If the point set is fixed, this is trivial; just
compare all O(n) possible such values (in linear time once the points are
sorted by their coordinate values, or in O(n log n) time for unsorted data).
The problem becomes more interesting if we are allowed to insert or delete
points, and we will use a data structure for this dynamic problem as part of
our higher dimensional algorithms.

First note that for n fixed, both x; — (i — 1)/n and i/n — x; are affine
functions of the two-dimensional points with coordinates (x;, i). The
problem of maximizing a linear function relative to a set of points in the
plane is well-studied: if we know the convex hull of all such points, we can
use binary search to find the maximum of either function in logarithmic
time. Thus we can reduce our dynamic one-dimensional discrepancy prob-
lem to one of dynamically maintaining certain two-dimensional convex
hulls. When we insert or delete a new point in the one-dimensional
problem, we must also adjust the positions of all succeeding points in the
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two-dimensional convex hull, since for each such point i will be increased or
decreased by one.

We use a modification of the convex hull algorithm of Overmars and van
Leeuwen [1981]. We maintain a balanced binary tree representing the
sorted order of points. The points themselves are stored at the leaves of the
tree; the internal nodes represent subsequences of several points. If the
tree is maintained as a red-black tree, each point insertion or deletion
causes O(1) tree rotations.

At each internal vertex v in the tree, we maintain an implicit represen-
tation of the convex hull of the points at leaves descending from v. Each
such convex hull is the convex hull of the union of two linearly separated
sets, one for each child of v. The convex hull at v may be produced from the
hulls at its two children by adding two bridge edges, and removing any
edges interior to the combined hull. Our representation consists simply of
storing, for each red-black tree vertex, these two bridges; we do not remove
the other edges. We also store at each node the number of points in X
descending from the node, and the positions of the bridge endpoints
relative to the sequence of points descending from the node.

LEMMA 1. The data structure described above can be used to find the
point maximizing any linear function of x, and i, in time O(log n) per query,
and can be updated if a point is inserted or deleted in time O(log? n). The
space used by the data structure is O(n).

PRrROOF: A binary search in this convex hull structure optimizing some
linear function can be performed simply by tracing a path down through
the red-black tree. As we progress down the tree, we keep track of how
many points occur before the node we are examining, by using the counts of
descendants. At each step in the path we determine the value of i for each
of the two endpoints x; of the bridge at the tree node reached by that step
by adding the number of points before the current node to the position of x;
in the sequence of points descending from the node. We use this informa-
tion to compare the values taken by the given linear function at the two
bridge endpoints. If one endpoint has a larger value, the maximum of the
function will be found in the corresponding child. We perform O(1) work at
each level, and O(log n) work overall.

It remains to show how to update this structure if we insert or delete a
point. We only need to recompute the bridges and counters for the red-black
tree vertices that are ancestors of the changed points or involved in a
rotation, O(log n) nodes altogether. For each vertex, the counters can be
updated in constant time by adding the counters for its two children. The
bridges (and positions of the bridge endpoints) can be found using binary
searches, in O(log n) time each, as in Overmars and van Leeuwen [1981].
Thus the total time per update becomes O(log® n). O

We have proved the following result.
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THEOREM 1. We can insert or delete points from a set X C [0, 1] and
recompute the discrepancy D(X) after each update in time O(log® n) per
update and space O(n).

PrOOF. We maintain the data structure described above, in time O(log?®
n) per update. As noted earlier, the discrepancy can then be found after
each update by maximizing the two linear functions x; — (i — 1)/n and
iln — x;. O

More generally, if we give each point x; a weight y, we can optimize
linear functions of (x;, ;) by modifying the data structure to store these
sums in place of the point counts described above. We will need this
generalization for the application of this algorithm to higher dimensional
halfspace discrepancy.

3. DISCREPANCY OF AXIS-ALIGNED RECTANGLES AND BOXES

Assume we are given a pattern X of n samples in the unit square. For some
(x, y) in the square, we can estimate the area of the rectangle [0, x] X [0, y] by
counting the number of samples within it. The true area is given by the
product xy, and we call the error the local discrepancy at the point (x, y):

1(f0, x1x [0, ) N X|

n

dX(x7 y) = | Xy

(This is essentially the same as the function d 4(X) defined in the introduc-
tion.) The irregularity of the distribution of samples can be measured by
averaging the local discrepancy over all possible values of x and y in the
square (with the obvious extension to higher dimensions). The L”-discrep-
ancy is defined to be the maximum absolute value of (x, y):

D(X) = sup dx(x,y)

x,y€[0,1]

and the L2-discrepancy is given by:

1/2
T(X) = (jl Jl dx(x, y)? dx dy) .

0 0

This is motivated by the importance of low-discrepancy sampling in numer-
ical integration. For example, in one dimension, there is the following
significant result:

THEOREM 2 (KOKSMA 1942).—If f is a function of bounded variation V(f)
on the unit interval [0, 1] and X = (x4, ... x,) are points in [0, 1] with
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L*”-discrepancy D (X), then

1 & 1
;2 f(x»—f f(t) dt| = V(f)D(X).

0

(Variation in this context refers to the integral of the absolute value of the
derivative.)

Koksma’s theorem was extended to higher dimensions [Neiderreiter
1978], but the definition of bounded variation is problematic. Nevertheless,
for a given function obeying the bounded-variation conditions, the error of
numerical integration is O(D). Roth has proven that, in % dimensions, the
best sampling patterns have discrepancy tightly bounded by 7(X) =
O(n~ Y(log n)*~V’2) [Beck and Chen 1987].

Sampling patterns such as the Hammersley points have been constructed
with discrepancies of D(X) = O(n~ '(log n)*~1!). Let ¢,(i) be the radical-
inverse function of i base r. Its value is a real number from 0 to 1
constructed by taking the integer i, represented in base r, and reflecting its
digits about the decimal point to form a fraction, base r. Given the
sequence of prime numbers 2, 3, 5,..., one of n Hammersley points is
given by:

X; = (l/n’ (bQ(l), d)S(l), ¢5(l)> LR )

An improvement suggested by Zaremba and generalized to higher dimen-
sions by Warnock [1971] is based on the folded radical inverse ,.(i). Here,
the jth most significant digit a; is replaced by (a; + j) mod r before the
reflection about the decimal point. In the same paper, Warnock presents an
O(n?) algorithm for computing T(X) and experimental results for several
proposed low-discrepancy patterns.

We now describe methods for computing the L”-discrepancy D(X) of a
point set X, with n = |X|. In two dimensions, we wish to find the
intersection of the unit square with a planar quadrant containing the
origin that maximizes the discrepancy. The optimal quadrant can be
defined by linear inequalities x = x,, ¥ = y, in which the coordinates (x,,
¥o) of the quadrant’s corner are some of the coordinates of points in X, but
different coordinates may be drawn from different points so the optimal
quadrant will not necessarily have a point of X as its corner. Nevertheless,
there are only O(n?) possibilities, and it is not hard to search through this
space in O(n?) time.

We can improve this naive bound by the following plane sweep technique.
Sweep a horizontal line across the unit square. Whenever we sweep across
point (x;, ¥;), we insert x; in the one-dimensional data structure described
in the previous section, and find the optimal quadrant having the sweep
line as its horizontal boundary. The area of this quadrant is a linear
function of the x-coordinate of the vertical boundary, so this optimal
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quadrant can be found by an appropriate linear optimization in the
one-dimensional data structure.

Thus we can compute the two-dimensional discrepancy in O(n) data
structure operations, for a total time of O(n log? n). Since the one-
dimensional data structure we use is itself closely related to the planar
convex hull problem in a collection of points (x, i), it may be possible that a
more specialized planar convex hull data structure such as that of Hersh-
berger and Suri [1991] can be adapted to reduce this time to O(n log n).
(The Hershberger—Suri algorithm allows point deletions only, while we
only perform point insertions; this complication could be avoided by revers-
ing the order in which we process the points. There are also known
algorithms that maintain planar convex hulls under a sequence of inser-
tions only, in O(log n) amortized time per operation; these, however, seem
less amenable to the changes in i-coordinate that happen to large numbers
of points as the one-dimensional data structure is updated.)

For orthants in any higher dimension, we perform a hyperplane sweep,
and each time we cross a point we compute the optimal orthant having the
sweep plane as part of its boundary, using the discrepancy algorithm for
the next lower dimension. We summarize our results so far below:

THEOREM 3. For any dimension k, we can compute D(X) in time O(n* !
log? n) and space O(n).

ProOOF. The proof is by induction on dimension. In each dimension the
coordinates of the optimal orthant must come from those of the input
points, else we could increase or decrease the orthant volume without
changing the number of points it contains. Therefore the algorithm pro-
duces the correct result by computing discrepancies at these coordinates
only. By induction, each discrepancy computation takes time O(n”* 2 log?
n), and O(n) such computations are made, from which the given time
bound follows. [

This improves the naive O(n”) bound and provides the best algorithm we
know of for dimensions 2 and 3. In higher dimensions, we can further
improve this bound using an alternative approach, which we now outline.
Our algorithm for this case is based on an technique of Overmars and Yap
[1991] for Klee’s measure problem.

Instead of directly searching for the maximum discrepancy orthant, we
find for each value of i from 1 to n the orthants with minimum and
maximum area that contain exactly i of the n points. Once these are found,
the discrepancy can be computed in linear time.

We dualize the problem by replacing every input point with an orthant
extending from that point away from the origin, and replacing potential
maximum-discrepancy orthants by the points at their corners. The contain-
ment relation between points and orthants is preserved by this dualization.
The problem thus becomes one of finding, in this dual arrangement of
orthants, the point contained in exactly i orthants and minimizing or
maximizing the product of its coordinates.
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We now apply a technique of Overmars and Yap [1991], to subdivide
space into O(n”*'2?) boxes, the positions of which depend on the input
orthant arrangement. We say that an orthant of our dual problem crosses a
box of the partition if some portion of the orthant boundary is interior to
the box. We say that an orthant of our dual problem covers a box if the box
is entirely contained in the orthant. Overmars and Yap show that, with the
partition generated by their construction, each box is crossed by only
O(n'?) orthants. The only boundary points of any orthant that are interior
to a box are those in the relative interior of a (¢ — 1)-dimensional facet of
the orthant. In other words, from the interior of the box, the orthant
behaves as if it were simply an axis-aligned halfspace.

We compute for each i the minimum or maximum point contained in
exactly i orthants, separately within each box of the partition. For the rest
of this section we fix our attention on some particular box b. Suppose b is
covered by m orthants. Since b is crossed by O(n'/2) orthants, each point in
b is contained in a number of orthants between m and m + O(n'/2), so we
need only consider values of i between these numbers.

As stated above, the orthants crossing crossing b appear as axis-aligned
halfspaces with respect to containment of points in . We sort these
halfspaces by the axis to which they are perpendicular, and within each
class of parallel halfspaces by the coordinates of their projection onto that
axis in time O(n'2 log n). Let h; ; be the projected coordinate of halfplane
J in the sorted list of halfplanes perpendicular to axis i.

If we only consider the halfspaces perpendicular to the first axis, we
could find the minimum first coordinate of a point contained in exactly j of
the halfspaces to be exactly f1(j) = h; ;. The maximum first coordinate is
g1(J) = hy ;1. If we only consider the halfspaces perpendicular to the first
two axes, we can find the minimum product of the first two coordinates of
points contained in exactly j halfspaces to be

f2(j) = min f1(k)h2,c,

j=k+t

and in general the minimum product of the first i coordinates of points
contained in exactly j halfspaces perpendicular to one of the first i
coordinates will be computed by

fi(j) = min fi—l(k)hi,€~

J=k+e

Similarly, the maximum such product can be computed as

g:(j) = max gi—l(k)hi,e+1-
J=k+t
Each of these recurrences can be computed in O(n) total time, as there are
O(n''2) values of j, k, and ¢ to examine.
Then the minimum and maximum products of coordinates of points
contained in exactly j orthants, among points in box b, are simply
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f(j — m) and g,(j — m). The points themselves can be found by a
standard technique of keeping back pointers to the values giving each
min or max in the computation.

THEOREM 4. For any dimension k, we can compute D(X) in time O(n*'?*1)

and space O(n).

Proor. Overmars and Yap [1991] show how to enumerate the boxes of
the partition in the given time and space bounds, without having to keep
the entire partition in memory at once.

For each of the O(n*'2) boxes, we determine the orthants crossing it and
covering it in O(n) time, sort the crossing hyperplanes in O(n2 log n)
time, and then perform the above computations of f; and g; in O(n) time.
Thus the total time is O(n*/2*1). O

4. DISCREPANCY OF ARBITRARY EDGES AND HALFSPACES

Theorems such as Koksma’s and the remarkable O(n (log n)*~1!) low-
discrepancy patterns give an initial impression that vast improvements can
be easily made in the efficiency of ray tracing or distribution ray tracing (by
replacing Monte Carlo integration with quasi-Monte Carlo methods). This
section may, to some extent, dash those hopes. First, it should be noted that
it is easy to create an image that does not have bounded variation
everywhere (a checkerboard viewed in perspective, for example). A more
fundamental problem occurs if we notice that synthetic images contain
edges and curved boundaries at arbitrary orientations. The existence of
O(n 1(log n)*~V’2) low-discrepancy patterns is limited to the problem of
estimating the area of axis-aligned rectangles.

Consider the problem of estimating the area of disks or of boxes at
arbitrary orientation. Surprisingly, the discrepancy is much larger. Work
by Schmidt and others have shown that one can do no better than the lower
bound of Q(n Y2 Y2k) in k dimensions [Beck and Chen 1987]. Upper
bounds on the best discrepancy are known and are typically larger than the
lower bounds by a polylogarithmic factor (for various generalized discrep-
ancy problems).

A common problem in computer graphics is a pixel in the neighborhood of
an edge. Consider a unit square with an arbitrary line passing through it.
As before, we have a pattern of samples inside the square. We can define a
arbitrary-edge discrepancy between the area of the square above the line
and the fraction of sample points above the line. Our goal is to develop an
algorithm for measuring the L™ norm (worst-case arbitrary line) for a given
sampling pattern and to apply this theory to analyze the behavior of some
commonly used sampling patterns.

Theoretical analysis has been done on the similar problem of arbitrary
edges through samples within a unit-area disk [Beck and Chen 1987].
Bounds on the worst-case (the best pattern you can get, given the worst-
case line) are Q(n~?*) and O(n~**(log n)''2). These bounds also apply to
our case of points in a unit square [Alexander 1990; Beck 1993; Chazelle et
al., 1995].

ACM Transactions on Graphics, Vol. 15, No. 4, October 1996.



364 D D.P. Dobkin et al.

We now discuss algorithms for computing the arbitrary-edge discrepancy
for point sets in [0, 1]2. More generally we consider the halfspace discrep-
ancy for point sets in [0, 1]* defined to be the maximum absolute value
difference between the relative number of points intersected by a halfspace
and the fraction of the hypercube [0, 1]* covered by the halfspace. As noted
below, this higher dimensional problem has applications—even in the
plane—to problems of computing discrepancy with respect to circles and
ellipses.

Just as with orthants, a collection of 2 points determines a halfspace, so
one might imagine a naive algorithm that tests the discrepancy of all O(n*)
such collections of points in X. However, such an algorithm would not be
correct: the complication is that, although in general a halfspace will be
defined by % points on its boundary, the halfspace with maximum discrep-
ancy may have fewer than 2 boundary points in X. Nevertheless, we can
prove the following lemmas.

LEMMA 2. Let X' C X C [0, 1]1* be the points on the boundary of the
halfspace h with maximum discrepancy. Then w(h) will be a local maxi-
mum or minimum in the space of all halfspaces having X' on their
boundaries.

ProoOF. If not, we could find a different halfspace covering the same set
of points, but giving larger or smaller volume in [0, 1]*, and therefore
having larger discrepancy. [

Since the measure w(h) can be expressed as an algebraic formula in £, it
has a constant number of local minima. Thus we can compute the halfspace
discrepancy Dg(X) as follows. For each set X' C X, with |[X'| = &,
determine the halfspaces forming local minima of w(k) and compute the
discrepancy of each such space. There are O(n*) sets X' examined, so the
total time is O(n**1).

This can be improved as follows. We treat sets X’ with |X’| < % in time
O(n*), as before. Each set X’ with |X'| = k determines a unique halfspace
h(X') (assuming general position of X; if X’ is not in general position we
can ignore the halfspaces it generates, as they will have already been
generated when we examined smaller cardinality subsets).

It remains to determine, for each set X' with |X'| = &, the measure
pw(hA(X")) and the cardinality of X N A(X'). The former can be done in
constant time for fixed dimension. For the latter, we enumerate sets X' by
considering all sets Y C X, with |Y| = 2 — 2, and adding all possible pairs
of points to form each set X'.

If we project the space R* perpendicularly to the affine hull of Y, two
dimensions remain. We wish to know, for each pair of points (a, b) in this
projected plane, the cardinality of the projection of X intersected with the
halfplane below line ab. This can be solved in constant amortized time per
pair using the topological sweeping algorithm of Edelsbrunner and Guibas
[1989]. We have proved the following:
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THEOREM 5. For any dimension k > 1, we can compute the halfspace
discrepancy D (X) in time O(n*) and space O(n).

This algorithm is practical. Indeed, as we discuss in the next section, we
have implemented an O(n? log n) time variant of our algorithm for R? as
part of a searching method for generating low discrepancy point sets for
sampling. The implementation computes the discrepancy of 1000 points in
204 seconds on a Sparcstation 2, as opposed to 2789 seconds for the naive
method.

Our methods can also be extended to shapes bounded by algebraic curves
such as spheres and ellipsoids. For example, we can consider discrepancy
with respect to circles in the plane by lifting the points to the paraboloid
z = x2 + y? in R3; each circle can then be lifted to a plane cutting the
paraboloid, and we can count the number of input points in a circle as the
number of lifted points below the corresponding plane. Using this method,
we can find the discrepancy in time O(n?®), which improves the naive O(n*)
method of testing circles one at a time. There is a matching Q(n?®) lower
bound on the number of possible circles determined by the input, so any
faster algorithm must eliminate many circles without computing the dis-
crepancies of each one. Similarly, ellipses can be linearized in a five-
dimensional space by lifting points (x, y) to (x, vy, x2, ¥2, xy), so we can
compute ellipse discrepancy in time O(n®); this again is tight, unless we
can eliminate many ellipses without computing individual discrepancies.

The same projection method (Theorem 5) is useful in dynamic versions of
the halfspace discrepancy problem. Suppose X is undergoing insertions and
deletions, and consider any Y C X of cardinality # — 1. Suppose X' D Y. If
we project perpendicularly to the affine hull of Y, the set of halfspaces with
Y on their boundaries projects to a set of lines sweeping around the point
into which Y projects.

As this line sweeps from the origin through 180° back to the origin again,
the measure u(h) varies algebraically. We can partition the possible angles
into O(1) intervals in which the measure is monotonic; within each interval
we parametrize the sweep angle by this measure, so that the measure
becomes linear in the parametrized angles.

We then assign weights to the planar projections of the input points.
Assign a point the weight +1 if it is added to the halfplane when swept
across in the 180° sweep, and —1 if it is removed. Then the higher
dimensional discrepancy problem for halfspaces involving Y becomes a
static one-dimensional weighted discrepancy problem in the parametrized
space of sweep angles. Thus we can use our one-dimensional data structure
to solve this problem in time O(log? n) for each update not involving Y. But
this also gives us a data structure for the dynamic global halfspace
discrepancy problem:

THEOREM 6. For any dimension k, we can insert or delete points from a
set X C [0, 11%, and recompute the discrepancy D (X) after each update, in
time O(n*~1 log? n) per update and space O(n* log n).
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ProorF. We simply keep a separate data structure for each possible
subset Y. There are O(n* 1) data structures for sets Y, each taking O(log®
n) time when any point is inserted or deleted. When a point is deleted from
the subset Y corresponding to one of these data structures, we simply erase
the structure itself from our memory. When a point is inserted, we must
create O(n*~2) structures in time O(n log n) each. All locally optimal
halfspaces with fewer than 2 — 1 points on the boundary can be enumer-
ated in O(n* ') time as before. [J

5. IMPLEMENTATION DETAILS

In the previous section we gave an O(n?) time algorithm for computing the
maximum arbitrary-edge discrepancy of a set of n points in the unit square
and discussed its generalization to higher dimensional halfspace discrep-
ancy. In this section we elaborate on the details needed to implement the
algorithm and discuss the experimental performance of a simplified version
of the algorithm that runs in O(n? log n) time.

We are given as input a collection of points P, = (x;, y;) in the unit
square. Initially, we might think we have to consider discrepancies of
infinitely many halfplanes through the unit square. As shown in the
previous section, this is not the case; rather we need only consider the
halfplanes bounded by O(n?) lines determined by pairs of points, together
with O(1) additional lines per point (O(n) total), which are sufficient to
determine the maximum arbitrary-edge discrepancy of the set.

We think of each halfplane as being defined by its boundary line ¢
together with an orientation (an arrow pointing one of two directions
parallel to the line). The halfplane itself is then the component of RZ\¢
that this arrow would point to if we turned it counterclockwise by 90°. For
each oriented line, we can then measure an edge discrepancy, determined as
the difference between the fraction of the points P, we expect to see in the
corresponding halfplane (i.e., the area of intersection between the halfplane
and the unit square) and the fraction we actually see. We show how to
compute the area of the unit square above a clipping line and the number of
input points in the halfplane above the line. From these quantities, it is a
simple matter to compute the edge discrepancy of the line in either orienta-
tion.

Our original points are given in primal space as coordinate pairs (x, y).
Lines are expressed most naturally by equations y = mx + b. They can
also be represented as points (the coordinate pair (m, b)) in dual space.
The point (x, y) in the primal space can similarly be translated to a line
b = (—x)m + y in the dual space; since this is the same as the equation
y = mx + b, a point and line will be incident in the primal space exactly
when the corresponding line and point are incident in the dual space. (We
will move between these two spaces as needed to simplify our discussion.)

We next turn to a discussion of how to compute the area of the region of
the unit square corresponding to a given (m, b) clipping line. If this area
function is well-behaved (in a manner made precise below), it will suffice to
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Table I. A(m, b), Twice the Area of the Region.

b>1 1>b6>0 0>b
m>1-5> 0 1 - b)%m (1 — 2b)/m
1-b6>m>-b —(m + b - 1)%m 2 — (m + 2b) 2 — (m + b)*m
-b>m 2m + 2b — 1)/m 2 + b%m 2

compute the maximum discrepancy as the maximum discrepancy at any
vertex of the line arrangement.

The area function is computed by a case analysis. We consider nine
classes of lines, given three ranges of the y intercept and three sides of the
square (not on the y axis) the line passes through. For convenience, we
define A(m, b) as twice the area of the region in Table I. The area A(m,
b)/2 is displayed as the surface in Figure 2.

We observe that the area function A(m, b) is continuous between the
regions defined in the table. Furthermore, there are no local extrema in the
area function: if a line (m, b) has nonempty intersection with the unit
square, it can always be moved in some direction to increase the area of the
clipped region. Similarly, there is a direction of motion that will decrease
this area. This leads to the observation:

LEMMA 3. Let R be any region in (m, b) space that is defined by a convex
polygon and lies totally in one region of the partition defined above. Then
the extrema of A(m, b) over R occur along the edges and vertices of R.

We can extend the power of this lemma by adding the lines that define the
boundaries between regions of the area function to the arrangement. This
then leads to the following:

LEMMA 4. Consider the set of points P;, i = 1, ...n. If we form the
arrangement of the lines P; (where P; is dual to P;) with the additional lines
b=1,6=0,b=1—-m, and b = —m, the maximum edge discrepancy

occurs along an edge or vertex of this arrangement.

PrOOF. We observe that the added lines create regions in the arrange-
ment such that each region is convex. Corresponding to each region is a
subset of the P, which lies above all lines (in primal space) represented by
points (in dual space) in the region. Further, the partial derivatives of the
area function are nonzero and of the same sign within the region (i.e., the
function is also convex). The previous lemma combined with this observa-
tion implies that the extrema of the function occur along edges of the
region. Since the discrepancy is defined at points of the region by subtract-
ing a constant from the area, the extrema of the discrepancy must also
occur along the edges. [

Note that the added lines yield the subdivision of the area function as
shown in Figure 3 illustrating the proof of the theorem. We have specified
above that the regions be convex and that both partial derivatives be
non-zero within a region. This assures that if we translate the origin of our
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Figure 2. The Function A(m,b). This image depicts a square region of the (m,b) plane, with
A(m,b) depicted as height; the b axis runs across the center of the square from lower right to
upper left, and the m axis runs lower left t, upper right.

Figure 3. The Function A(m,b) with boundary lines added.

coordinate system to any point of the region, we get 4 quadrants. In one of
these, the area function increases as we traverse a vector. In another, the
function decreases. We can make no assumptions about the other two since
we are taking linear combinations of a positive and a negative quantity.
Indeed, there may be vectors in these quadrants along which the direc-
tional derivative passes through zero. It is these vectors that require us to
consider the behavior of the area function along edges as well as at
vertices.

Now consider a line in dual space, corresponding to a point in primal
space. The points on the line in dual space correspond to the lines through
the point in primal space. Traversing the dual line is the same as rotating a
line about the primal point. Suppose we were to compute the area clipped
by each line through the point. This computation is the same as computing
this area at each point of the line in dual space. This area function in
primal space potentially has 8 extrema. Four of these occur at the corners
of the unit square (and correspond exactly to the 4 clipping lines we added
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A _.‘:Rr(A)
' B
R4y
D "-,.Ra,(D) C

Figure 4. Extrema of the area function for line segments through a point in the unit square.
The extrema (dotted lines) are found by forming lines from the point to the square’s corners
(solid lines) and reflecting them across vertical and horizontal lines through the point.

to the arrangement). These correspond to situations where the shape of the
clipped area changes.

The other 4 potential extrema are more subtle. These occur in situations
where our rotating line clips regions through which the area function is
nonmonotonic, even though we pass through no corner point. To see this,
observe that the rotating line always divides the unit square into either 2
trapezoids or a pentagon and a triangle. In the former case, extrema are
realized at vertices of the unit square and nowhere else. It is the latter case
that interests us.

Consider the counterclockwise rotation from the line labeled B to the line
labeled A in Figure 4. At B, a triangle is being clipped. The vertices of this
triangle lie on the line y = 1, at the vertex (0, 1), and on the line x = 0.
The triangle is a right triangle, so its area is the product of the lengths of
its two legs along the square’s boundary. Consider a line of slope m passing
through the point (p, q); its area is (1 — (¢ — mp))?/m. Differentiating,
we determine that this results in an extremum when m = —(¢g — 1)/p.
This extremum is realized by the segments labeled R,(A) and R,(A) in
Figure 4. This construction could be translated to any of the other corners,
resulting in possible clipping lines of slope —¢/p, —q/(p — 1) and —(q —

ACM Transactions on Graphics, Vol. 15, No. 4, October 1996.



370 D D.P. Dobkin et al.

1)/(p — 1). We realize endpoints of these lines by the reflections shown in
Figure 4. Notice that some of the reflections yield triangle vertices outside
the unit square (i.e., the region is a trapezoid) and so can be ignored.
Others, such as R (D), lie within the square but lead to clipping lines that
create trapezoids and so are uninteresting.

By considering all of the reflections (i.e., 4 lines of special slope for each
input point) we find all extrema. Each of the cutting lines corresponds to a
point along the dual line. The addition of these 4n vertices is sufficient to
assure that the maximum discrepancy occurs (i.e., all extrema of the area
function occur) at vertices of the arrangement.

This leads to the following result:

THEOREM 7. The maximum edge discrepancy for the input points P,, i =
1, ... n occurs at a vertex of the arrangement constructed, as follows:

(1) We form the arrangement of the lines P, dual to the P,.
(2) We add to this arrangement the boundary linesb = 1,b = 0,b =1 —

m, and b = — m.

(3) For each point P; = (x;, y,), we add to the corresponding dual line P,
the points of slope (i.e., m-coordinate in dual space) —y,/x;, —(1 —
y)x;, —y,/(1 — «x;), and —(1 — y)/(1 — x;) as vertices of this
arrangement.

It remains to turn the theorem above into an algorithm. To satisfy
condition (3), we can in quadratic time compute the discrepancy at each of
the 4n slopes mentioned there. Since this running time will be dominated
by anything else we do, we perform this computation and then turn to
satisfying conditions (1) and (2).

We could satisfy the first two conditions by first computing the arrange-
ment of the n + 4 lines (comprised of the n dual lines and the 4 additional
lines). Each region of the arrangement could record the number of points
dominated by lines in that region. We would then determine the O(n?)
vertices of the arrangement, compute the discrepancy at each, and deter-
mine the maximum discrepancy. We can examine all vertices of the
arrangement in O(n?) time and O(n) space by the algorithm of Edelsbrun-
ner and Guibas [1989]. In practice, this approach is prone to difficulties if
data is not in a general position.

An alternative is to consider how vertices in the arrangement (in dual
space) arise. A vertex is at the intersection of two lines, each of which is the
dual of a point in primal space. In primal space, the vertex corresponds to
the line connecting the 2 points. Thus, we can restate the theorem above as
follows:

THEOREM 8. Given the set of points P;, i = 1, ... n, consider the set of
lines formed by connecting pairs of the n + 4 points consisting of the P;
enhanced by the 4 points (0, 0), (0, 1), (1, 0), (1, 1). The maximum
arbitrary-edge discrepancy is the edge discrepancy of one of these lines, or of
one of the 4n lines determined by condition (3) of the previous theorem.
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Table II. Experimental Runtimes of O(n? log n) and O(n®) Algorithms

Points Fast algorithm Slow algorithm
100 1.7 3.2
200 6.8 23.9
400 28.7 178.7
800 120.2 1399.5

1600 513.2 11272.3
3200 2258.9 89351.3
6400 9554.8 738041.4

This theorem gives rise to a trivial O(n®) algorithm, and to an easily
implemented O(n? log n) algorithm for computing the discrepancy. Let p
be one of the n + 4 points and sort the other points radially about p. Now,
we choose p and the first point in sort order and determine how many
points are in the region they define from which the discrepancy of the line
they define can be found. Having done so, we can update to the next point
in sorted order by sweeping through the sorted list. The number of input
points in the region can be updated in constant time at each step, as it
differs from the previous value by +1 or —1. Note that the four extra points
should not be included in this count, but only used to define extra
candidate worst-case lines.

Note that if the sorted points are labeled q4, g5, . .. q; and g, and g; lie
in the same portion of the unit square when clipped by the line connecting
p and q,, then so do all of the points between g; and g, in either clockwise
or counterclockwise order. We use this observation to show that we need to
sweep through the sorted list no more than 2 times to find the discrepan-
cies of all lines having p as one endpoint. Finally, we compare this
maximum discrepancy with that computed under condition (3) to get the
true answer.

We have implemented both the naive O(n?®) algorithm and the O(n?log
n) algorithm discussed above. Timings (running time in seconds on a
SparcStation 2) are given in Table II. These times concur with our
theoretical analysis and display clearly the benefit of a faster algorithm.

6. EXPERIMENTAL RESULTS

The fast algorithms for discrepancy presented above allow us to immedi-
ately explore two problems. First, we can make observations about the
asymptotic behavior of some point processes. This is relevant to numerical
integration, and possibly to computing form factors in progressive radios-
ity. Second, we can use this fast algorithm to search for ultra-low discrep-
ancy patterns. This is relevant to the rendering problem where we are
unlikely to place more than a few hundred samples in a pixel, but we might
want to have a nearly optimal pattern.

We first consider the rectangle (quadrant) discrepancy as computed by
the algorithms in Section 3.
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Table III. 2-Dimensional Rectangular L2-Discrepancies

Process 16 points 256 points 1600 points
Zaremba 0.0358 0.00255 0.000438
jittered 0.0501 0.00627 0.00161
Poisson 0.0900 0.0211 0.00867
Dart-Throwing 0.0521 0.00794 0.00258

Shirley computed the L”- and L?-discrepancies of a number of commonly
used nonuniform sampling patterns. It is worth doing a similar set of
experiments again, but with progressively higher densities, to get a flavor
of the asymptotic behavior. We consider four sampling patterns. The first is
Zaremba’s low-discrepancy pattern generated with the folded radical in-
verse function. The second is the jittered sampling pattern obtained by
randomly perturbing a regular periodic pattern (each point is perturbed to
a location uniformly distributed in a square around its original location).
The third is the random Poisson-distributed pattern approximated by
generating n uniformly-distributed points on the unit hypercube (in a
section of a true Poisson process, n itself would have a Poisson distribution
about the mean sample density). The fourth pattern is a “Poisson-disk”
pattern [Cook 1986; Mitchell 1987] designed to induce high-frequency
sampling noise, generated by a dart-throwing algorithm on the unit torus
(promoted as the “best pattern known” by advocates of the signal-process-
ing viewpoint).

The numbers in Table III are averages from 100 trials (except for the
deterministic Zaremba pattern). The values for n = 16 agree fairly well
with Shirley’s results, and the values for the Poisson process agree with the
theoretical value of T(X)? = n= %2 % — 37*) for k£-dimensional patterns.

The most important feature is the asymptotic behavior as n increases.
For Poisson patterns, the O(n~2) behavior is evidenced by the fact that
increasing n by a factor of 100 only decreased the discrepancy by a factor of
10. At the other extreme, the discrepancy of Zaremba’s pattern decreases at
an impressive rate. The jitter and dart-throwing patterns are intermediate,
but itl/izs very interesting that their discrepancy seems to be better than
O(n~—"=).

We next discuss experimental results for arbitrary edge (halfspace)
discrepancy.

We computed the L™ arbitrary-edge discrepancy for four important types
of sampling patterns, as shown in Table IV. For the stochastic point
processes (dart-throwing, jittered, Poisson), 100 trials were made to get an
average for the process.

In addition, two Monte-Carlo algorithms have been used to search for
patterns of low discrepancy. These are very preliminary experiments. An
on-line algorithm builds up patterns one point at a time by trying to find
the best next point. Given a pattern of n points, this method generates mn
random points and then selects the one which causes the smallest increase
in discrepancy (see Mitchell [1991] for discussion of a similar on-line

ACM Transactions on Graphics, Vol. 15, No. 4, October 1996.



Computing the Discrepancy with Applications to Supersampling Patterns . 373

Table IV. 2-Dimensional Arbitrary-Edge L*-Discrepancies

Process 16 points 256 points 1600 points
Zaremba 0.184 0.0345 0.0158
jittered 0.183 0.0296 0.00854
Dart-Throwing 0.180 0.0339 0.0118
Poisson 0.299 0.0791 0.0337
On-Line MC 0.169 0.0281 —
Off-Line MC 0.106 0.0215 —

blue-noise algorithm). For the data in Table IV, m = 10. An off-line
algorithm starts with n random points and attempts to replace points at
random if the replacement will reduce the discrepancy. The fast discrep-
ancy computation algorithms discussed earlier are critical for the efficient
performance of such methods.

Zaremba’s pattern, which had dramatically low axis-aligned discrepancy,
is not particularly good at dealing with arbitrary edges. Once again,
random sampling is consistent with O(n~'/2) accuracy. The jittered and
dart-throwing patterns perform best. Of the two, jittered sampling shows a
slightly better discrepancy, which is not consistent with its spectral and
visual properties, which are inferior to dart-throwing. The Monte Carlo
experiments provide a low-water mark, patterns with the lowest discrep-
ancy that we found. A very interesting open problem is to find the
minimum-discrepancy pattern of n points.

An local optimization approach has also been applied to this final
problem. Starting from a random pattern, there are a number of algorithms
for improving the pattern until it reaches a local minimum. We used the
“downhill simplex” algorithm to perform this local minimization in 2N
dimensions. As an example, a randomly jittered pattern of 16 points was
created having a discrepancy of 0.21058531. After local minimization, a
pattern resulted with a discrepancy of 0.13278586.

This is not likely to be a global minimum, however. To find patterns of
lower discrepancy, we employed a simulated-annealing heuristic. A current
lowest-discrepancy pattern is jittered by a normal-distributed random
amount and then locally minimized. If this gives an improved pattern, it
becomes the current lowest. This process is repeated and the standard
deviation of the jitter is gradually reduced. Table V compares the resulting
annealed patterns with several other interesting point patterns.

The simulated annealing procedure was computationally expensive and
has only been used to find patterns of up to 64 points. Once again, these are
likely not global minima of discrepancy, but they give what are currently
the best known upper bounds. Figure 5 shows the patterns for 9, 16, and 64
points.

7. CONCLUSIONS AND OPEN PROBLEMS

In conclusion, we have defined an arbitrary-edge discrepancy measure
motivated by the edge antialiasing problem in graphics. We have described
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Table V. Arbitrary-Edge Discrepancies for Some Patterns

N Poisson Jittered Uniform Annealed
4 0.46254099 0.40702848 0.25000000 0.25000009
9 0.38279813 0.24642622 0.16666671 0.13984264

16 0.34753269 0.21058531 0.12500000 0.09380108

25 0.14757580 0.12370891 0.10000000 0.06937759

36 0.22695184 0.11139708 0.08333347 0.05488351

49 0.18920535 0.08516756 0.07142873 0.04543021

64 0.11701021 0.06950806 0.06250000 0.03751558

Figure 5. Low-discrepancy patterns for 9, 16, and 64 points.

both static and dynamic algorithms for computing rectangular and arbi-
trary-edge discrepancies. Two-dimensional variants of the algorithms have
been implemented; we have not attempted to implement the asymptotically
fastest O(n?) algorithm for arbitrary-edge discrepancy.

Applying this algorithm to some common supersampling patterns, we
find evidence for convergence faster than O(n~'/2). This is interesting, but
the relative discrepancy of jittered and dart-throwing sampling are some-
what inconsistent with spectral and image-quality properties—it was
shown in Mitchell [1987] that dart-throwing gives better image quality
than jittering.

Numerous open problems remain, which we briefly mention here:

(1) Our algorithms compute the exact discrepancy, but in many cases have
slow running times because of the underlying combinatorial complexity.
Is it possible to find approximation schemes with better running times
and reasonable worst-case (or average-case) error bounds?

(2) For any of the discrepancy measures discussed here, and a given value
of n, is it possible to determine the minimum discrepancy set of n
points?

(3) Given a point set and a discrepancy measure, is there an efficient
algorithm to find the point which, when added to the set, results in the
lowest discrepancy?

(4) Given a point set S for which the discrepancy is known and a second
point set T such that |T| << |S|, is there an efficient method for finding
the |T|/2 points of T which, when added to S, result in the lowest
discrepancy?

(5) Can we solve the discrepancy problem in polynomial time for families of
sets other than those given here? In particular, can we compute
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discrepancy with respect to the family of arbitrary convex sets, this
being the general case of most interest? As mentioned earlier, we can do
so0 in cubic time for circles and O(n®) time for ellipses.

(6) Is there a family of sets that is interesting in practice and for which
discrepancy can be computed in time that does not grow exponentially
with the dimension of the problem?

Since we first reported on our discrepancy algorithms [Dobkin and Epp-
stein 1993], some further research has extended our results and partially
answered some of these questions. In particular, Chazelle [1993] has
described fast approximation algorithms for arbitrary-edge discrepancy,
Dobkin et al. [1994] have described algorithms for computing discrepancy
with respect to arbitrary rectangles (not having the origin as a corner), and
de Berg [1996] has described algorithms for strip discrepancy. Dobkin et al.
[1994] also note applications of discrepancy computation to other areas of
computer science, including computational learning theory.
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